Freshwater plant macroecology needs to step forward from the shadows of the terrestrial domain

Authors

DOI:

https://doi.org/10.30671/nordia.149042

Abstract

Freshwater plants, or macrophytes, make up only 1-2% of all plant species on Earth but play a crucial role in aquatic ecosystems. They are key to primary production, provide habitat and food for various organisms, and influence water quality. Despite their importance, freshwater plants face significant threats from global changes, which necessitates research at broader scales. Historically, freshwater plants have been less studied than terrestrial plants, partly due to a lack of global data and a focus on local scales by ecologists. Unlike terrestrial plants, freshwater plants do not always follow the same ecological patterns. In this text, we summarise current knowledge on three well-known macroecological patterns and how they differ between freshwater and terrestrial plants: latitude-species richness gradient, Rapoport’s rule and species replacement vs. species richness differences of beta diversity. For example, terrestrial plants follow the latitudinal diversity gradient hypothesis, whereas species richness peaks in the sub-tropics for freshwater plants. Although findings on Rapoport’s rule are less clear, research on terrestrial plants in North America shows that turnover (i.e., species replacing each other) is more significant in areas with high species richness and environmental stability, whereas nestedness (i.e., species composition at one site is a subset of a richer site) is more common in species-poor areas with high environmental variability. For freshwater plants, beta diversity patterns vary with latitude, but species replacement generally dominates over nestedness. Overall, freshwater plants exhibit unique macroecological patterns that differ from terrestrial plants, highlighting the need for more extensive research to understand their biodiversity and ecological roles. This can be achieved with more harmonized data sets and equal research efforts in both realms. Better knowledge of macroecological patterns and their drivers for freshwater plants is crucial for conservation efforts and policy-making aimed at preserving plant species diversity and sustaining ecosystem services in freshwater environments.

References

Alahuhta J, Kosten S, Akasaka M, Auderset D, Azzella M, Bolpagni R, Bove CP, Chambers PA, Chappuis E, Ilg C, Clayton J, de Winston M, Ecke F, Gacia E, Gecheva G, Grillas P, Hauxwell J, Hellsten H, Hjort J, Hoyer MV, Kolada K, Kuoppala M, Lauridsen T, Li E-H, Lukács BA, Mjelde M, Mikulyuk A, Mormul RP, Nishihiro J, Oertli B, Rhazi L, Rhazi M, Sass L, Schranz C, Søndergaard M, Yamanouchi T, Yu Q, Wang H, Willby N, Zhang X-K, & Heino J (2017) Global variation in the beta diversity of lake macrophytes is driven by environmental heterogeneity rather than latitude. Journal of Biogeography 44(8): 1758-1769. https://doi.org/10.1111/jbi.12978

Alahuhta J, Lindholm M, Bove CP, Chappuis E, Clayton J, de Winton M, Feldmann T, Ecke F, Gacia E, Grillas P, Hoyer MV, Johnson LB, Kolada K, Kosten S, Lauridsen T, Lukács BA, Mjelde M, Mormul RP, Rhazi L, Rhazi M, Sass L, Søndergaard M, Xu J & Heino J (2018) Global patterns in the metacommunity structuring of lake macrophytes: regional variations and driving factors. Oecologia 188: 1167-1182. https://doi.org/10.1007/s00442-018-4294-0

Alahuhta J, Antikainen H, Hjort J, Helm A & Heino J (2020) Current climate overrides historical effects on species richness and range size patterns of freshwater plants in Europe and North America. Journal of Ecology 108(4): 1262-1275. https://doi.org/10.1111/1365-2745.13356

Alahuhta J, Lindholm M, Baastrup-Spohr L, García-Girón J, Toivanen M, Heino J & Murphy K (2021) Macroecology of plants in the freshwater realm: patterns, mechanisms and implications. Aquatic Botany 168: 103325. https://doi.org/10.1016/j.aquabot.2020.103325

Albert JS, Destouni G, Duke-Sylvester SM, Magurran AE, Oberdorff T, Reis R, Winemiller KO & Ripple WJ (2021) Scientists’ warning to humanity on the freshwater biodiversity crisis. Ambio 50: 84-94. https://doi.org/10.1007/s13280-020-01318-8

Azzella M, Dalla Vecchia A, Abeli T, Alahuhta J, Amoroso V, Ballesteros EBV, Bobrov A, Brunton D, Caldeira C, Ceschin S, Chemeris E, Čtvrtlíková M, De Winton M, Gacia E, Grishutkin O, Hofstra D, Ivanova D, Ivanova M, Konotop N, Larson D, Magrini S, Mjelde M, Mochalova O, Oliveira G, Pedersen O, Pereira J, Ribaudo C, Romero BM, Troia A, Vinogradova Y, Volkova P, Zandonadi D, Zueva N & Bolpagni R (2024) Global assessment of aquatic Isoëtes species ecology. Freshwater Biology 69(10): 1420-1437. https://doi.org/10.1111/fwb.14316

Bolpagni R (2021) Towards global dominance of invasive alien plants in freshwater ecosystems: The dawn of the Exocene? Hydrobiologia 848: 2259-2279. https://doi.org/10.1007/s10750-020-04490-w

Cook CDK (1999) Aquatic Plant Book (2nd ed.). Amsterdam/New York: SPB Academic Publishing.

Dudgeon D (2010) Prospects for sustaining freshwater biodiversity in the 21st century: linking ecosystem structure and function. Current Opinion in Environmental Sustainability 2(5-6), 422-430. https://doi.org/10.1016/j.cosust.2010.09.001

Engelhardt KAM, & Ritchie ME (2001) Effects of macrophyte species richness on wetland ecosystem functioning and services. Nature, 411, 687-689. https://doi.org/10.1038/35079573

Field R, Hawkins BA, Cornell HV, Currie DJ, Diniz-Filho AF, Guégan J-F, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O’Brien EM & Turner JRG (2009) Spatial species-richness gradients across scales: a meta-analysis. Journal of Biogeography 36(1): 132-147. https://doi.org/10.1111/j.1365-2699.2008.01963.x

García-Girón J, Heino J, Baastrup-Spohr L, Bove CP, Clayton J, de Winton M, Feldmann T, Fernández-Aláez M, Ecke F, Grillas P, Hoyer MV, Kolada A, Kosten S, Lukács BA, Mjelde M, Mormul RP, Rhazi L, Rhazi M, Sass L, Xu J & Alahuhta J (2020a) Global patterns and determinants of lake macrophyte taxonomic, functional and phylogenetic beta diversity. Science of the Total Environment 723: 138021. https://doi.org/10.1016/j.scitotenv.2020.138021

García-Girón J, Heino J, Baastrup-Spohr L, Clayton J, de Winton M, Feldmann T, Fernández-Aláez C, Ecke F, Hoyer MV, Kolada A, Kosten A, Lukács BA, Mormul RP, Rhazi L, Rhazi M, Sass L, Xu J & Alahuhta J (2020b) Elements of lake macrophyte metacommunity structure: global variation and community-environment relationships. Limnology & Oceanography 65(12): 2883-2895. https://doi.org/10.1002/lno.11559

García-Girón J, Heino J, Iversen LL, Helm A & Alahuhta J (2021) Rarity in freshwater vascular plants across Europe and North America: Patterns, mechanisms and future scenarios. Science of the Total Environment 786: 147491. https://doi.org/10.1016/j.scitotenv.2021.147491

García-Girón J, Heino J, Baastrup-Spohr L, Bove CB, Clayton J, de Winton M, Feldmann T, Fernández-Aláez C, Ecke F, Grillas P, Hoyer MV, Kolada A, Kosten S, Lukács BA, Mjelde M, Mormul RP, Rhazi L, Rhazi M, Sass L, Xu J & Alahuhta J (2023a) Compositional breakpoints of freshwater plant communities across continents: Biogeographical transitions in plant communities. Limnetica 42(2): 291-301. https://doi.org/10.23818/limn.42.21

García-Girón J, Bini LM & Heino J (2023b) Shortfalls in our understanding of the causes and consequences of functional and phylogenetic variation of freshwater communities across continents. Biological Conservation 282: 110082. https://doi.org/10.1016/j.biocon.2023.110082

Gaston JK, & Blackburn TM (2006) Patterns and Process in Macroecology. Oxford: Blackwell Science.

Gillard M, Thiébaut G, Deleu C & Leroy B (2017) Present and future distribution of three aquatic plant taxa across the world: Decreases in native and increases in invasive ranges. Biological Invasions 19:2159-2170. https://doi.org/10.1007/s10530-017-1428-y

Heino J (2011) Macroecological perspective of diversity patterns in the freshwater realm. Freshwater Biology 56(9), 1703-1722. https://doi.org/10.1111/j.1365-2427.2011.02610.x

Heino J, Bini LM, García-Girón J, Lansac-Tôha FM, Lindholm M & Rolls RJ (2024) Navigating the spatial and temporal aspects of beta diversity to clarify understanding biodiversity change. Global Ecology and Conservation https://doi.org/10.1016/j.gecco.2024.e03343

Hussner A, Heidbüchel P, Coetzee J, Gross EM (2021) From introduction to nuisance growth: A review of traits of alien aquatic plants which contribute to their invasiveness. Hydrobiologia 848: 2119-2151. https://doi.org/10.1007/s10750-020-04463-z

Iversen LL, Winkel A, Baastrup-Spohr L, Hinke AB, Alahuhta J, Baattrup-Pedersen A, Birk S, Brodersen P, Chambers PA, Ecke F, Feldmann T, Gebler D, Heino J, Jespersen TS, Moe SJ, Riis T, Sass L, Vestergaard O, Maberly SC, Sand-Jensen K & Pedersen O (2019) Catchment properties and the photosynthetic trait composition of freshwater plant communities. Science 366(6467): 878-881. https://doi.org/10.1126/science.aay5945

Iversen LL, García-Girón J & Pan J (2022) Towards linking freshwater plants and ecosystems via functional biogeography. Aquatic Botany, 176, 103454. https://doi.org/10.1016/j.aquabot.2021.103454

Kreft H & Jetz W (2007) Global patterns and determinants of vascular plant diversity. Proceedings of the National Academy of Sciences 104(14): 5925–5930. https://doi.org/10.1073/pnas.0608361104

Lacoul P, & Freedman B (2006) Environmental influences on aquatic plants in freshwater ecosystems. Environmental Reviews 14(2): 89-136. https://doi.org/10.1139/a06-001

Legendre P (2014) Interpreting the replacement and richness difference components of beta diversity. Global Ecology and Biogeography 23(11): 1324-1334. https://doi.org/10.1111/geb.12207

Lobato‑de Magalhães T, Murphy K, Efremov A, Davidson TA, Molina-Navarro E, Wood KA, Tapia-Grimaldo J, Hofstra D, Fu H & Ortegón-Aznar I (2023) How on Earth did that get there? Natural and human vectors of aquatic macrophyte global distribution. Hydrobiologia 850: 1515-1542. https://doi.org/10.1007/s10750-022-05107-0

Lobato-de Magalhães T, Murphy K, Grimaldo JT, Davidson TA, Molina-Navarro E, de-Nova JA & Efremov A (2024) Global hotspots of endemicity, rarity and speciation of aquatic macrophytes. Marine and Freshwater Research 75: MF23121. https://doi.org/10.1071/MF23121

Luukkonen S, Heino J, Hjort J, Helm A & Alahuhta J (2024) A macroecological analysis of ecological uniqueness of freshwater macrophyte assemblages across Europe and North America. Journal of Ecology. https://doi.org/10.1111/1365-2745.14434

Morueta-Holme N, Enquist BJ, McGill BJ, Boyle B, Jørgensen PM, Ott JE, Peet RK, Šímová I, Sloat LL, Thiers B, Violle C, Wiser SK, Dolins S, Donoghue II JC, Kraft NJB, Regetz J, Schildhauer M, Spencer N & Svenning J-S (2013) Habitat area and climate stability determine geographical variation in plant species range sizes. Ecology Letters 16 (12): 1446–1454. doi: 10.1111/ele.12184

Murphy K, Efremov A, Davidson TA, Molina-Navarro E, Fidanza K, Crivelati-Betiol TC, Chambers P, Grimaldo JT, Martins SV, Springuel I, Kennedy M, Mormul RP, Dibble E, Hofstra D, Lukacs BA, Gebler D, Baastrup-Spohr L & Urrutia-Estrada, J. (2019). World distribution, diversity and endemism of aquatic macrophytes. Aquatic Botany 158: 103127. https://doi.org/10.1016/j.aquabot.2019.06.006

Murphy K, Carvalho P, Efremov A, Tapia Grimaldo J, Molina-Navarro E, Davidson TA & Thomaz SM (2020) Latitudinal variation in global range-size of aquatic macrophyte species shows evidence for a Rapoport effect. Freshwater Biology 65(9): 1622-1640. https://doi.org/10.1111/fwb.13528

O´Hare M, Aguiar F, Asaeda T, Bakker E, Chambers P, Clayton J, Elger A, Ferreira TM, Gross EM, Gunn IDM, Gurnell AM, Hellsten S, Hofstra D, Li W, Mohr S, Puijalon S, Szoszkiewicz K, Willby N & Wood K (2018) Plants in aquatic ecosystems: current trends and future directions. Hydrobiologia 812: 1-11. https://doi.org/10.1007/s10750-017-3190-7

Pan Y, García–Girón J & Iversen LL (2023) Global change and plant-ecosystem functioning in freshwaters. Trends in Plant Science 28(6): 646-660. https://doi.org/10.1016/j.tplants.2022.12.013

Pinto-Ledezma JN, Larkin DJ & Cavender-Bares J (2018) Patterns of Beta Diversity of Vascular Plants and Their Correspondence With Biome Boundaries Across North America. Frontiers in Ecology and Evolution 6: 194. https://doi.org/10.3389/fevo.2018.00194

Reid AJ, Carlson AK, Creed IF, Eliason EJ, Gell PA, Johnson PTJ, Kidd KA, MacCormack TJ, Olden JD, Ormerod SJ, Smol JP, Taylor WW, Tockner K, Vermaire JC, Dudgeon D & Cooke SJ (2019) Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological Reviews 94(3), 849-873. https://doi.org/10.1111/brv.12480

Sabatini FM, Jiménez-Alfaro B, Jandt U, Chytrý M, Field R, Kessler M, Lenoir J, Schrodt F, Wiser SK, Arfin Khan MAS, Attorre F, Cayuela L, De Sanctis M, Dengler J, Haider J, Hatim MZ, Indreica A, Jansen F, Pauchard A, Peet RK, Petřík P, Pillar VD, Sandel B, Schmidt M, Tang Z, van Bodegom P, Vassilev K, Violle C, Alvarez-Davila E, Davidar P, Dolezal J, Hérault B, Galán-de-Mera A, Jiménez J, Kambach S, Kepfer-Rojas S, Kreft H, Lezama F, Linares-Palomino R, Monteagudo Mendoza A, N’Dja JK, Phillips OL, Rivas-Torres G, Sklenář P, Speziale K, Strohbach BJ, Vásquez Martínez R, Wang H-F, Wesche K & Bruelheide H (2022) Global patterns of vascular plant alpha diversity. Nature Communications 13: 4683. https://doi.org/10.1038/s41467-022-32063-z

Sheth SN, Morueta-Holme N & Angert AL (2020) Determinants of geographic range size in plants. New Phytologist 226(3): 650-665. https://doi.org/10.1111/nph.16406

Soininen J, Bartels P, Heino J, Luoto M & Hillebrand H (2015) Toward more integrated ecosystem research in aquatic and terrestrial environments. BioScience 65: 174-182. https://doi.org/10.1093/biosci/biu216

Stevens GC (1989) The latitudinal gradient in geographical range: How so many species coexist in the tropics. The American Naturalist 133(2): 240-256. https://doi.org/10.1086/284913

Willig MR & Presley SJ (2018) Latitudinal Gradients of Biodiversity: Theory and Empirical Patterns. Dominick A.D., & Goldstein, M.I. (eds): Encyclopedia of the Anthropocene, Elsevier, pp. 13-19. https://doi.org/10.1016/B978-0-12-809665-9.09809-8.

Downloads

Published

2025-07-25

How to Cite

Freshwater plant macroecology needs to step forward from the shadows of the terrestrial domain. (2025). Nordia Geographical Publications, 54(2), 69-77. https://doi.org/10.30671/nordia.149042