Palsa mires of the Northern Hemisphere: environmental characteristics, degradation, and morpho-ecological state

Authors

DOI:

https://doi.org/10.30671/nordia.161627

Abstract

Palsas are unique permafrost landforms that are found in the peatlands of discontinuous and sporadic permafrost regions across the Northern Hemisphere. Palsa mounds create diverse microhabitats for both plant and animal species, making them important features that support the biodiversity of periglacial environments. In addition to their ecological importance, palsa mires also are linked to the global carbon cycle and greenhouse gas emissions through permafrost degradation. Future thawing of permafrost is projected to release large amounts of greenhouse gases from northern peatlands, which can further accelerate global climate warming. Therefore, the changing permafrost dynamics make palsa mires an interesting and critical research topic, one
that can help us to better recognize and understand the ongoing and future changes in periglacial environments.


The main objective of this thesis is to provide a comprehensive understanding of the environmental factors influencing the occurrence and morpho-ecological
state of palsa mires, and to predict future changes in palsa distribution. To achieve this, the thesis employs a multi-scale approach, integrating remote sensing data and statistical modelling across spatial scales ranging from circumpolar to local. First, the environmental characteristics of palsa mires in different parts of the Northern Hemisphere are examined by regional comparisons. Second, circumpolar changes in the suitable environments for palsas are predicted under three different future trajectories of greenhouse gas concentrations. Finally, the morpho-ecological state and degradation of palsa mires at the local scale are investigated in northern Finland.


The results show that palsa mires occur in narrow but regionally varying environmental settings, with climatic factors and soil moisture conditions playing a key role in defining suitable environments for the landforms. Without effective climate change mitigation, environments suitable for palsas are projected to almost completely disappear in the northern permafrost region by the end of the century. This projection is consistent with observations showing the overall poor morpho-ecological state of Finnish palsa mires and their significant degradation over the past 50 years. The results also highlight
the scale-dependent influence of environmental factors for the occurrence and state of palsa mires. While climatic factors were consistently important across spatial scales, the influence of seasonal freeze-thaw dynamics and soil moisture varied between larger-scale and smaller-scale studies.


This thesis highlights the urgent need to understand the impacts of climate change  on permafrost landscapes. The predicted dramatic loss of suitable environments for palsa mires underscores their vulnerability and the potential ecological consequences of their degradation. By integrating spatial modelling across different spatial scales, this thesis provides novel insights into the complex interplay between climatic and  environmental factors governing the distribution and state of palsas. The results improve our understanding of the ongoing changes in the northern permafrost regions and provide valuable information to support policymakers in planning conservation efforts and in making sustainable decisions regarding permafrost regions and peatlands.

References

Aalto J & Luoto M (2014) Integrating climate and local factors for geomorphological distribution

models. Earth Surface Processes and Landforms 39(13): 1729–1740.

https://doi.org/10.1002/esp.3554

Aalto J, Venäläinen A, Heikkinen RK & Luoto M (2014) Potential for extreme loss in high-latitude

Earth surface processes due to climate change. Geophysical Research Letters 41(11):

–3924. https://doi.org/10.1002/2014GL060095

Aalto J, Harrison S & Luoto M (2017a) Statistical modelling predicts almost complete loss of major

periglacial processes in Northern Europe by 2100. Nature Communications 8(1): 1–8. https://doi.org/10.1038/s41467-017-00669-3

Aalto J, Riihimäki H, Meineri E, Hylander K & Luoto M (2017b) Revealing topoclimatic

heterogeneity using meteorological station data. International Journal of Climatology 37(S1): 544–556. https://doi.org/10.1002/JOC.5020

Aalto J, Karjalainen O, Hjort J & Luoto M (2018) Statistical forecasting of current and future

circum-Arctic ground temperatures and active layer thickness. Geophysical Research Letters 45(10): 4889–4898. https://doi.org/10.1029/2018GL078007

Åhman R (1977) Palsar i Nordnorge: En studie av palsars morfologi, utbredning och klimatiska

förutsättningar i Finnmarks och Troms fylke. Meddelanden från Lunds universitets

Geografiska institution Avhandlingar 78: 1–165.

Allouche O, Tsoar A & Kadmon R (2006) Assessing the accuracy of species distribution models:

prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43(6):

–1232. https://doi.org/10.1111/J.1365-2664.2006.01214.X

Andresen CG, Lawrence DM, Wilson CJ, McGuire AD, Koven C, Schaefer K, Jafarov E, Peng S,

Chen X, Gouttevin I, Burke E, Chadburn S, Ji D, Chen G, Hayes D & Zhang W (2020) Soil moisture and hydrology projections of the permafrost region – a model intercomparison. The Cryosphere 14(2): 445–459. https://doi.org/10.5194/tc-14-445-2020

Arctic Council (2013) Arctic biodiversity assessment: status and trends in Arctic biodiversity.

Arctic Council. https://www.arcticbiodiversity.is/index.php/the-report

Arlen-Pouliot Y & Bhiry N (2005) Palaeoecology of a palsa and a filled thermokarst pond in a

permafrost peatland, subarctic Québec, Canada. Holocene 15(3): 408–419. https://doi.org/10.1191/0959683605hl818rp

Atchley AL, Coon ET, Painter SL, Harp DR & Wilson CJ (2016) Influences and interactions of

inundation, peat, and snow on active layer thickness. Geophysical Research Letters 43(10): 5116–5123. https://doi.org/10.1002/2016GL068550

Atkinson PM & Tate NJ (2000) Spatial scale problems and geostatistical solutions: A review. The

Professional Geographer 52(4): 607–623. https://doi.org/10.1111/0033-0124.00250

Austin MP, Belbin L, Meyers JA, Doherty MD & Luoto M (2006) Evaluation of statistical models

used for predicting plant species distributions: Role of artificial data and theory. Ecological Modelling 199(2): 197–216. https://doi.org/10.1016/j.ecolmodel.2006.05.023

Biskaborn BK, Smith SL, Noetzli J, Matthes H, Vieira G, Streletskiy DA, Schoeneich P,

Romanovsky VE, Lewkowicz AG, Abramov A, Allard M, Boike J, Cable WL, Christiansen HH, Delaloye R, Diekmann B, Drozdov D, Etzelmüller B, Grosse G, Guglielmin M, Ingeman-Nielsen T, Isaksen K, Ishikawa M, Johansson M, Johannsson H, Joo A, Kaverin D, Malkova G, Meiklejohn I, Moskalenko N, Oliva M, Phillips M, Ramos M, Sannel ABK, Sergeev D, Seybold C, Skryabin P, Vasiliev A, Wu Q, Yoshikawa K, Zheleznyak M & Lantuit H (2019) Permafrost is warming at a global scale. Nature Communications 10(1): 264. https://doi.org/10.1038/s41467-018-08240-4

Borg I & Groenen PJF (2005) Modern Multidimensional Scaling. Springer, New York.

https://doi.org/10.1007/0-387-28981-X

Borge AF, Westermann S, Solheim I & Etzelmüller B (2017) Strong degradation of palsas and peat

plateaus in northern Norway during the last 60 years. The Cryosphere 11(1): 1–16. https://doi.org/10.5194/tc-11-1-2017

Bosiö J, Johansson M, Callaghan TV, Johansen B & Christensen TR (2012) Future vegetation

changes in thawing subarctic mires and implications for greenhouse gas exchange: A regional assessment. Climate Change 115(1): 379–398. https://doi.org/10.1007/s10584-012-0445-1

Breiman L (2001) Random forests. Machine Learning 45(1): 5–32.

https://doi.org/10.1023/A:1010933404324

Brown J, Ferrians OJ, Heginbottom JA & Melnikov ES (1997) International Permafrost

Association Circum-Arctic Map of Permafrost and Ground Ice Conditions, Map CP-45. US

Geological Survey. https://doi.org/10.3133/CP45

Brown J, Ferrians OJJ, Heginbottom JA & Melnikov ES (2002) Circum-Arctic Map of Permafrost

and Ground-Ice Conditions, Version 2. National Snow and Ice Data Center. https://nsidc.org/data/ggd318/versions/2 (accessed 20 October 2024)

Camill P (1999) Patterns of boreal permafrost peatland vegetation across environmental gradients

sensitive to climate warming. Canadian Journal of Botany 77(5): 721–733. https://doi.org/10.1139/b99-008

Christiansen HH, Etzelmüller B, Isaksen K, Juliussen H, Farbrot H, Humlum O, Johansson M,

Ingeman-Nielsen T, Kristensen L, Hjort J, Holmlund P, Sannel ABK, Sigsgaard C, Åkerman HJ, Foged N, Blikra LH, Pernosky MA & Ødegård RS (2010) The thermal state of permafrost in the nordic area during the international polar year 2007–2009. Permafrost and Periglacial Processes 21(2): 156–181. https://doi.org/10.1002/PPP.687

Conrad O, Bechtel B, Bock M, Dietrich H, Fischer E, Gerlitz L, Wehberg J, Wichmann V &

Böhner J (2015) System for automated geoscientific analyses (SAGA) v. 2.1.4. Geoscientific Model Development 8(7): 1991–2007. https://doi.org/10.5194/gmd-8-1991-2015

Cyr S & Payette S (2010) The origin and structure of wooded permafrost mounds at the arctic

treeline in eastern Canada. Plant Ecology and Diversity 3(1): 35–46. https://doi.org/10.1080/17550871003777176

Czekirda J, Westermann S, Etzelmüller B & Jóhannesson T (2019) Transient modelling of

permafrost distribution in Iceland. Frontiers in Earth Science 7(1): 130. https://doi.org/10.3389/feart.2019.00130

Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JRG, Gruber B,

Lafourcade B, Leitão PJ, Münkemüller T, McClean C, Osborne PE, Reineking B, Schröder B, Skidmore AK, Zurell D & Lautenbach S (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36(1): 27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x

Elith J, Graham H, Anderson P, Dudík M, Ferrier S, Guisan A, Hijmans R, Huettmann F,

Leathwick J, Lehmann A, Li J, Lohmann G, Loiselle B, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton J, Peterson AT, Phillips S, Richardson K, Scachetti-Pereira R, Schapire RE, Soberón J, Williams S, Wisz ME & Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29(2): 129–151. https://doi.org/10.1111/J.2006.0906-7590.04596.X

Elith J & Leathwick JR (2009) Species distribution models: ecological explanation and prediction

across space and time. Annual Review of Ecology, Evolution, and Systematics 40(1): 677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159

Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE & Yates CJ (2011) A statistical explanation of

MaxEnt for ecologists. Diversity and Distributions 17(1): 43–57. https://doi.org/10.1111/J.1472-4642.2010.00725.X/PDF

Elmendorf SC, Henry GHR, Hollister RD, Björk RG, Boulanger-Lapointe N, Cooper EJ,

Cornelissen JHC, Day TA, Dorrepaal E, Elumeeva TG, Gill M, Gould WA, Harte J, Hik DS, Hofgaard A, Johnson DR, Johnstone JF, Jónsdóttir IS, Jorgenson JC, Klanderud K, Klein JA, Koh S, Kudo G, Lara M, Lévesque E, Magnússon B, May JL, Mercado-Díaz JA, Michelsen A, Molau, U, Myers-Smith IH, Oberbauer SF, Onipchenko VG, Rixen C, Schmidt NM, Shaver GR, Spasojevic MJ, Pórhallsdóttir PE, Tolvanen A, Troxler T, Tweedie CE, Villareal S, Wahren CH, Walker X, Webber PJ, Welker JM & Wipf S (2012) Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nature Climate Change 2(1): 453–457. https://doi.org/10.1038/nclimate1465

Emmert A & Kneisel C (2021) Internal structure and palsa development at Orravatnsrústir Palsa

Site (Central Iceland), investigated by means of integrated resistivity and ground-penetrating radar methods. Permafrost and Periglacial Processes 32(3): 503–519. https://doi.org/10.1002/PPP.2106

Errington RC, Macdonald SE & Bhatti JS (2024) Rate of permafrost thaw and associated plant

community dynamics in peatlands of northwestern Canada. Journal of Ecology 112(7):

–1582. https://doi.org/10.1111/1365-2745.14339

Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ & Taylor KE (2016) Overview of

the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development 9(5): 1937–1958. https://doi.org/10.5194/gmd-9-1937-2016

Eythorsson D, Gardarsson SM, Gunnarsson A & Sveinsson OGB (2023) Observed and predicted

trends in Icelandic snow conditions for the period 1930–2100. The Cryosphere 17(1): 51–62. https://doi.org/10.5194/tc-17-51-2023

Feng X, Park DS, Liang Y, Pandey R & Papeş M (2019) Collinearity in ecological niche modeling:

Confusions and challenges. Ecology and Evolution 9(18): 10365–10376. https://doi.org/10.1002/ece3.5555

Fewster RE, Morris PJ, Swindles GT, Gregoire LJ, Ivanovic RF, Valdes PJ, Mullan D (2020)

Drivers of Holocene palsa distribution in North America. Quaternary Science Reviews 240(1): 106337. https://doi.org/10.1016/j.quascirev.2020.106337

Fewster RE, Morris PJ, Ivanovic RF, Swindles GT, Peregon AM & Smith CJ (2022) Imminent loss

of climate space for permafrost peatlands in Europe and Western Siberia. Nature Climate Change 12(1): 373–379. https://doi.org/10.1038/s41558-022-01296-7

Fick SE & Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for

global land areas. International Journal of Climatology 37(12): 4302–4315. https://doi.org/10.1002/JOC.5086

Finnish Meteorological Institute (2024) Temperature and precipitation statistics from 1961 onwards.

https://en.ilmatieteenlaitos.fi/statistics-from-1961-onwards (accessed 2 July 2024).

French H (2017) The Periglacial Environment. Wiley and Sons, Chichester.

https://doi.org/10.1002/9781119132820

Fries T & Bergström E (1910) Några iakttagelser över palsar och deras förekomst i nordligaste

Sverige. Geologiska Foreningens I Stockholm Forhandlinger 32(1): 195–205.

Fronzek S, Luoto M & Carter T (2006) Potential effect of climate change on the distribution of

palsa mires in subarctic Fennoscandia. Climate Research 32(1): 1–12. https://doi.org/10.3354/cr032001

Gisnås K, Etzelmüller B, Lussana C, Hjort J, Sannel ABK, Isaksen K, Westermann S, Kuhry P,

Christiansen HH, Frampton A & Åkerman J (2017) Permafrost Map for Norway, Sweden and Finland. Permafrost and Periglacial Processes 28(2): 359–378. https://doi.org/10.1002/ppp.1922

Glagolev M, Kleptsova I, Filippov I, Maksyutov S & Machida T (2011) Regional methane emission

from West Siberia mire landscapes. Environmental Research Letters 6(4): 045214. https://doi.org/10.1088/1748-9326/6/4/045214

Grosse G & Jones BM (2011) Spatial distribution of pingos in northern Asia. The Cryosphere 5(1):

–33. https://doi.org/10.5194/tc-5-13-2011

Guiasu S & Shenitzer A (1985) The principle of maximum entropy. The Mathematical Intelligencer

: 42–48. https://doi.org/10.1007/BF03023004

Guisan A & Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecological

Modelling 135(1): 147–186. https://doi.org/10.1016/S0304-3800(00)00354-9

Gurney SD (2001) Aspects of the genesis, geomorphology and terminology of palsas: perennial

cryogenic mounds. Progress in Physical Geography 25(2): 249–260. https://doi.org/10.1177/030913330102500205

Hanley JA & McNeil BJ (1982) The meaning and use of the area under a receiver operating

characteristic (ROC) curve. Radiology 143(1): 29–36. https://doi.org/10.1148/radiology.143.1.7063747

Hastie T & Tibshirani R (1986) Generalized Additive Models. Statistical Science 1: 297–318.

Heikkinen RK, Leikola N, Aalto J, Aapala K, Kuusela S, Luoto M & Virkkala R (2020)

Fine-grained climate velocities reveal vulnerability of protected areas to climate change. Scientific Reports 10(1): 1678. https://doi.org/10.1038/s41598-020-58638-8

Higgins KL & Garon-Labrecque MÈ (2018) Fine-scale influences on thaw depth in a forested

peat plateau landscape in the Northwest Territories, Canada: Vegetation trumps microtopography. Permafrost and Periglacial Processes 29(1): 60–70. https://doi.org/10.1002/PPP.1961

Hijmans RJ, Cameron SE, Parra JL, Jones PG & Jarvis A (2005) Very high resolution interpolated

climate surfaces for global land areas. International Journal of Climatology 25(15): 1965–1978. https://doi.org/10.1002/joc.1276

Hijmans RJ, Phillips S, Leathwick J & Elith J (2021) dismo: Species Distribution Modeling. R

package version 1.3-5. https://CRAN.R-project.org/package=dismo (accessed 14 October 2024)

Hirakawa K (1986) Development of a palsa bog in central highland, Iceland. Geographical Reports

of Tokyo Metropolitan University 21(1): 111–122.

Hjort J & Luoto M (2013) Statistical methods for geomorphic distribution modeling. In Shroder JF

& Baas ACW (eds.) Treatise on Geomorphology vol 2, Quantitative Modeling of Geomorphology, 59–73. Academic Press, San Diego. https://doi.org/10.1016/B978-0-12-374739-6.00028-2

Hjort J, Gordon JE, Gray M & Hunter ML (2015) Why geodiversity matters in valuing nature’s

stage. Conservation Biology 29(3): 630–639. https://doi.org/10.1111/COBI.12510

Hjort J, Streletskiy D, Doré G, Wu Q, Bjella K & Luoto M (2022) Impacts of permafrost

degradation on infrastructure. Nature Reviews Earth & Environment 3(1): 24–38. https://doi.org/10.1038/s43017-021-00247-8

Hugelius G, Loisel J, Chadburn S, Jackson RB, Jones M, MacDonald G, Marushchak M, Olefeldt

D, Packalen M, Siewert MB, Treat C, Turetsky M, Voigt C & Yu Z (2020) Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proceedings of the National Academy of Sciences of the United States of America 117(34): 20438–20446. https://doi.org/10.1073/pnas.1916387117

IPCC (2021) Climate change 2021: The physical science basis. Working Group I contribution to

the Sixth Assessment Report. The Intergovernmental Panel on Climate Change.

https://www.ipcc.ch/report/ar6/wg1/ (accessed 8 August 2024)

Janssen JAM, Rodwell JS, García Criado M, Gubbay S, Haynes T, Nieto A, Sanders N, Landucci F,

Loidi J, Ssymank AT, Ahvanainen T, Valderrabano M, Acosta A, Aronsson M, Arts G, Attorre F, Bergmeier E, Bijlsma RJ, Bioret F, Bita-Nicolae C, Biurrun I, Calix M, Capelo J, Cami A, Chytrý M, Dengler J, Dimopoulos P, Essl F, Gardfjell H, Gigante D, Giusso del Galdo G, Hájek M, Jansen F, Jansen J, Kapfer J, Mickolajczak A, Molina JA, Molznár Z, Paternoster D, Piernik A, Poulin B, Renaux B, Schaminée JHJ, Sumberová K, Toivonen H, Tonteri T, Tsiripidis I, Tzonev R & Valachovic M (2016). European Red List of Habitats. Part 2. Terrestrial and freshwater habitats European Red List of Habitats Environment. https://doi.org/10.2779/091372

Järvinen O & Sammalisto L (1976). Regional trends in the avifauna of Finnish peatland bogs.

Annales Zoologici Fennici 13(1): 31–43.

Järvinen O & Väisänen RA (1976). Species diversity of Finnish birds, II: Biotopes at the transition

between taiga and tundra. Acta Zoologica Fennica 145(1): 1–35.

Järvinen O, Kouki J & Häyrinen U (1987) Reversed latitudinal gradients in total density and

species richness of birds breeding on Finnish mires. Ornis Fennica 64(2): 67–73.

Jean M & Payette S (2014a) Effect of vegetation cover on the ground thermal regime of wooded

and non-wooded palsas. Permafrost and Periglacial Processes 25(4): 281–294. https://doi.org/10.1002/PPP.1817

Jean M & Payette S (2014b) Dynamics of active layer in wooded palsas of northern Quebec.

Geomorphology 206(1): 87–96. https://doi.org/10.1016/J.GEOMORPH.2013.10.001

Johansson M, Callaghan TV, Bosiö J, Åkerman JH, Jackowicz-Korczynski M & Christensen TR

(2013) Rapid responses of permafrost and vegetation to experimentally increased snow cover in sub-arctic Sweden. Environmental Research Letters, 8, 035025. https://doi.org/10.1088/1748-9326/8/3/035025

Johnson KD, Harden JW, McGuire AD, Clark M, Yuan F & Finley AO (2013) Permafrost and

organic layer interactions over a climate gradient in a discontinuous permafrost zone. Environmental Research Letters 8(1): 035028. https://doi.org/10.1088/1748-9326/8/3/035028

Jones BM, Baughman CA, Romanovsky VE, Parsekian AD, Babcock EL, Stephani E, Jones MC,

Grosse G & Berg EE (2016) Presence of rapidly degrading permafrost plateaus in south-central Alaska. The Cryosphere 10(6): 2673–2692. https://doi.org/10.5194/TC-10-2673-2016

Karjalainen O, Luoto M, Aalto J. Etzelmüller B, Grosse G, Jones BM, Lilleøren KS & Hjort J

(2020) High potential for loss of permafrost landforms in a changing climate. Environmental Research Letters 15(10): 104065. https://doi.org/10.1088/1748-9326/abafd5

Kass JM, Muscarella R, Galante PJ, Bohl CL, Pinilla-Buitrago GE, Boria RA, Soley-Guardia M &

Anderson RP (2021) ENMeval 2.0: Redesigned for customizable and reproducible modeling of species’ niches and distributions. Methods in Ecology and Evolution 12(9): 1602–1608. https://doi.org/10.1111/2041-210X.13628

Kellerer-Pirklbauer A, Farbrot H & Etzelmüller B (2007) Permafrost aggradation caused by tephra

accumulation over snow-covered surfaces: Examples from the Hekla-2000 eruption in

Iceland. Permafrost and Periglacial Processes 18(3): 269–284. https://doi.org/10.1002/PPP.596

Larsen JN & Fondahl G (2015) Arctic human development report: regional processes and global

linkages. Nordic Council of Ministers, Copenhagen.

Leppiniemi O, Karjalainen O, Aalto J, Luoto M & Hjort J (2023) Environmental spaces for palsas

and peat plateaus are disappearing at a circumpolar scale. The Cryosphere 17(8): 3157–3176. https://doi.org/10.5194/TC-17-3157-2023

Leppiniemi O, Karjalainen O, Aalto J, Luoto M & Hjort J (2025) Environmental drivers of palsa

and peat plateau occurrences: A regional comparison across the Northern Hemisphere. Permafrost and Periglacial Processes 36(1): 37–50. https://doi.org/10.1002/PPP.2253

Leppiniemi O, Karjalainen O, Aalto J, Yletyinen E, Luoto M & Hjort J (Manuscript) The

morpho-ecological state of palsa mires: insights from high-resolution spatial modelling.

Li W & Hsu CY (2022) GeoAI for large-scale image analysis and machine vision: Recent progress

of artificial intelligence in geography. ISPRS International Journal of Geo-Information 11(7): 385. https://doi.org/10.3390/ijgi11070385

Lloyd CD (2014) Exploring spatial scale in geography. John Wiley & Sons, Chichester.

Luoto M & Seppälä M (2002) Modelling the distribution of palsas in Finnish Lapland with logistic

regression and GIS. Permafrost and Periglacial Processes 13(1): 17–28. https://doi.org/10.1002/ppp.404

Luoto M & Seppälä M (2003) Thermokarst ponds as indicators of the former distribution of palsas

in Finnish Lapland. Permafrost and Periglacial Processes 14(1): 19–27. https://doi.org/10.1002/ppp.441

Luoto M, Fronzek S & Zuidhoff FS (2004a) Spatial modelling of palsa mires in relation to climate

in Northern Europe. Earth Surface Processes and Landforms 29(11): 1373–1387. https://doi.org/10.1002/esp.1099

Luoto M, Heikkinen RK & Carter TR (2004b) Loss of palsa mires in Europe and biological

consequences. Environmental Conservation 31(1): 30–37. https://doi.org/10.1017/S0376892904001018

Maliniemi T, Kapfer J, Saccone P, Skog A & Virtanen R (2018) Long-term vegetation changes of

treeless heath communities in northern Fennoscandia: Links to climate change trends and reindeer grazing. Journal of Vegetation Science 29(3): 469–479. https://doi.org/10.1111/jvs.12630

Mamet SD, Chun KP, Kershaw GGL, Loranty MM & Kershaw P (2017) Recent increases in

permafrost thaw rates and areal loss of palsas in the western Northwest Territories, Canada. Permafrost and Periglacial Processes 28(4): 619–633. https://doi.org/10.1002/ppp.1951

Markkula I (2014) Permafrost dynamics structure species compositions of oribatid mite (Acari:

Oribatida) communities in sub-Arctic palsa mires. Polar Research 33(1): 22926. https://doi.org/10.3402/polar.v33.22926

Martin LCP, Nitzbon J, Aas KS, Etzelmüller B, Kristiansen H & Westermann S (2019) Stability

conditions of peat plateaus and palsas in Northern Norway. Journal of Geophysical Research: Earth Surface 124(3): 705–719. https://doi.org/10.1029/2018JF004945

Martin LCP, Nitzbon J, Scheer J, Aas KS, Eiken T, Langer M, Filhol S, Etzelmüller B &

Westermann S (2021) Lateral thermokarst patterns in permafrost peat plateaus in northern Norway. The Cryosphere 15(8): 3423–3442. https://doi.org/10.5194/tc-15-3423-2021

Meinshausen M, Nicholls ZRJ, Lewis J, Gidden MJ, Vogel E, Freund M, Beyerle U, Gessner C,

Nauels A, Bauer N, Canadell JG, Daniel JS, John A, Krummel PB, Luderer G, Meinshausen N, Montzka SA, Rayner PJ, Reimann S, Smith SJ, van den Berg M, Velders GJM, Vollmer MK & Wang RHJ (2020) The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geoscientific Model Development 13(8): 3571–3605. https://doi.org/10.5194/gmd-13-3571-2020

Mekonnen ZA, Riley WJ, Grant RF & Romanovsky VE (2021) Changes in precipitation and air

temperature contribute comparably to permafrost degradation in a warmer climate. Environmental Research Letters 16(2): 024008. https://doi.org/10.1088/1748-9326/abc444

Meloun M, Militký J, Hill M & Brereton RG (2002) Crucial problems in regression modelling and

their solutions. The Analyst 127(4): 433–450. https://doi.org/10.1039/b110779h

Möller R, Römer W, Möller M, Wollenberg U, Lehmkuhl F, Schneider C & Kukla PA (2020)

Thermal conductivity of supraglacial volcanic deposits in Iceland. International Journal of Earth Sciences 109(2): 569–585. https://doi.org/10.1007/s00531-020-01820-0

Myers-Smith IH, Elmendorf SC, Beck PSA, Wilmking M, Hallinger M, Blok D, Tape KD,

Rayback SA, Macias-Fauria M, Forbes BC, Speed JDM, Boulanger-Lapointe N, Rixen C, Lévesque E, Schmidt NM, Baittinger C, Trant AJ, Hermanutz L, Collier LS, Dawes MA, Lantz TC, Weijers S, Jørgensen RH, Buchwal A, Buras A, Naito AT, Ravolainen V, Schaepman-Strub G, Wheeler JA, Wipf S, Guay KC, Hik DS & Vellend M (2015) Climate sensitivity of shrub growth across the tundra biome. Nature Climate Change 5(9): 887–891. https://doi.org/10.1038/nclimate2697

National Land Survey of Finland (2024) Hillshade (elevation model).

https://www.maanmittauslaitos.fi/en/maps-and-spatial-data/datasets-and-interfaces/product-descriptions/hillshade (accessed 17 October 2024).

Oksanen J, Simpson GL, Blanchet GF, Kindt R, Legendre P, Minchin PR, O’Hara RB, Solymos P,

Stevens HMH, Szoecs E, Wagner H, Barbour M, Bedward M, Bolker B, Bocard D, Carvalho G, Chirico M, De Caceres M, Durant S, Antoniazi Evangelista HB, FitzJohn R, Friendly M, Furneaux B, Hannigan G, Hill MO, Lahti L, McGlinn D, Ouellette MH, Ribeiro Cunha E, Smith T, Stier A, Ter Braak CJF & Weedon J (2024) vegan: Community Ecology Package. https://doi.org/10.32614/CRAN.PACKAGE.VEGAN (accessed 8 October 2024)

Oksanen PO, Kuhry P & Alekseeva RN (2001). Holocene development of the Rogovaya River peat

plateau, European Russian Arctic. The Holocene 11(1): 25–40. https://doi.org/10.1191/095968301675477157.

Oksanen PO, Kuhry P & Alekseeva RN (2003). Holocene development and permafrost history of

the Usinsk Mire, northeast European Russia. Geographie Physique et Quaternaire 57(2): 169–187. https://doi.org/10.7202/011312AR.

Oksanen PO (2008) Holocene development of the Vaisjeäggi palsa mire, Finnish Lapland. Boreas

(1): 81–95. https://doi.org/10.1111/j.1502-3885.2006.tb01114.x.

Olefeldt D, Goswami S, Grosse G, Hayes D, Hugelius G, Kuhry P, McGuire AD, Romanovsky VE,

Sannel ABK, Schuur EAG & Turetsky MR (2016) Circumpolar distribution and carbon storage of thermokarst landscapes. Nature Communications 7(1): 13043. https://doi.org/10.1038/ncomms13043.

Olefeldt D, Hovemyr M, Kuhn MA, Bastviken D, Bohn TJ, Connolly J, Crill P, Euskirchen ES,

Finkelstein SA, Genet H, Grosse G, Harris LI, Heffernan L, Helbig M, Hugelius G, Hutchins R, Juutinen S, Lara MJ, Malhotra A, Manies K, McGuire AD, Natali SM, O’Donnell JA, Parmentier FJW, Räsänen A, Schädel C, Sonnentag O, Strack M, Tank SE, Treat C, Varner RK, Virtanen T, Warren RK & Watts JD (2021) The boreal-arctic wetland and lake dataset (BAWLD). Earth System Science Data 13(12): 5127–5149. https://doi.org/10.5194/ESSD-13-5127-2021.

Olvmo M, Holmer B, Thorsson S, Reese H & Lindberg F (2020) Sub-arctic palsa degradation and

the role of climatic drivers in the largest coherent palsa mire complex in Sweden (Vissátvuopmi), 1955–2016. Scientific Reports 10(1): 8937. https://doi.org/10.1038/s41598-020-65719-1.

O’Neill BC, Tebaldi C, van Vuuren DP, Eyring V, Friedlingstein P, Hurtt G, Knutti R, Kriegler E,

Lamarque JF, Lowe J, Meehl GA, Moss R, Riahi K & Sanderson BM (2016) The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geoscientific Model Development 9(9): 3461–3482. https://doi.org/10.5194/gmd-9-3461-2016.

Ottósson JG, Sveinsdóttir A & Harðardóttir M (2016). Vistgerðir á Íslandi. Fjölrit

Publication Series 54. Icelandic Institute of Natural History, Garðabær.

Outcalt SI & Nelson F (1984) Computer Simulation of Buoyancy and Snow-Cover Effects in Palsa

Dynamics. Arctic and Alpine Research 16(2): 259–263. https://doi.org/10.1080/00040851.1984.12004413.

Outcalt SI, Nelson FE & Hinkel KM (1990) The zero‐curtain effect: Heat and mass transfer across

an isothermal region in freezing soil. Water Resources Research 26(7): 1509–1516. https://doi.org/10.1029/WR026i007p01509.

Parviainen M & Luoto M (2007) Climate envelopes of mire complex types in Fennoscandia.

Geografiska Annaler: Series A, Physical Geography 89(2): 137–151. https://doi.org/10.1111/j.1468-0459.2007.00314.x.

Payette S, Delwaide A, Caccianiga M & Beauchemin M (2004) Accelerated thawing of subarctic

peatland permafrost over the last 50 years. Geophysical Research Letters 31(18): L18208. https://doi.org/10.1029/2004GL020358.

Persson A, Hasan A, Tang J & Pilesjö P (2012) Modelling flow routing in permafrost landscapes

with TWI: An evaluation against site-specific wetness measurements. Transactions in GIS 16(5): 701–713. https://doi.org/10.1111/j.1467-9671.2012.01338.x

Phillips JD (2006) Evolutionary geomorphology: thresholds and nonlinearity in landform response

to environmental change. Hydrology and Earth System Sciences 10(5): 731–742. https://doi.org/10.5194/hess-10-731-2006

Phillips SJ & Dudík M (2008) Modeling of species distributions with Maxent: new extensions and

a comprehensive evaluation. Ecography 31(2): 161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x

Phillips SJ, Anderson RP, Dudík M, Schapire RE & Blair ME (2017) Opening the black box: an

open-source release of Maxent. Ecography 40(7): 887–893. https://doi.org/10.1111/ecog.03049

Pissart A (2002) Palsas, lithalsas and remnants of these periglacial mounds. A progress report.

Progress in Physical Geography 26(4): 605–621. https://doi.org/10.1191/0309133302pp354ra

Poggio L, De Sousa LM, Batjes NH, Heuvelink GBM, Kempen B, Ribeiro E & Rossiter D (2021)

SoilGrids 2.0: Producing soil information for the globe with quantified spatial uncertainty. SOIL 7(1): 217–240. https://doi.org/10.5194/soil-7-217-2021

Post E, Forchhammer MC, Bret-Harte MS, Callaghan TV, Christensen TR, Elberling B, Fox AD,

Gilg O, Hik DS, Høye TT, Ims RA, Jeppesen E, Klein DR, Madsen J, McGuire AD, Rysgaard S, Schindler DE, Stirling I, Tamstorf MP, Tyler NJC, Van Der Wal R, Welker J, Wookey PA, Schmidt NM & Aastrup P (2009) Ecological dynamics across the Arctic associated with recent climate change. Science 325(5946): 1355–1358. https://doi.org/10.1126/science.1173113

R Core Team (2023) R: A language and environment for statistical computing. R Foundation for

Statistical Computing, Vienna. https://www.R-project.org/ (accessed 14 October 2024)

Railton JB & Sparling JH (1973) Preliminary studies on the ecology of palsa mounds in northern

Ontario. Canadian Journal of Botany 51(5): 1037–1044. https://doi.org/10.1139/b73-128

Ran Y, Li X, Cheng G, Che J, Aalto J, Karjalainen O, Hjort J, Luoto M, Jin H, Obu J, Hori M, Yu

Q & Chang X (2022) New high-resolution estimates of the permafrost thermal state and hydrothermal conditions over the Northern Hemisphere. Earth System Science Data 14(2): 865–884. https://doi.org/10.5194/essd-14-865-2022

Rantanen M, Karpechko AYu, Lipponen A, Nordling K, Hyvärinen O, Ruosteenoja K, Vihma T &

Laaksonen A (2022) The Arctic has warmed nearly four times faster than the globe since 1979. Communications Earth & Environment 3(1): 168. https://doi.org/10.1038/s43247-022-00498-3

Renette C, Olvmo M, Thorsson S, Holmer B & Reese H (2024) Multitemporal UAV lidar detects

seasonal heave and subsidence on palsas. The Cryosphere 18(11): 5465–5480. https://doi.org/10.5194/tc-18-5465-2024

Roberts DR, Bahn V, Ciuti S, Boyce MS, Elith J, Guillera-Arroita G, Hauenstein S, Lahoz-Monfort

JJ, Schröder B, Thuiller W, Warton DI, Wintle BA, Hartig F & Dormann CF (2017) Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 40(8): 913–329. https://doi.org/10.1111/ecog.02881

Romanovsky VE, Smith SL & Christiansen HH (2010) Permafrost thermal state in the polar

Northern Hemisphere during the international polar year 2007–2009: a synthesis. Permafrost and Periglacial Processes 21(2): 106–116. https://doi.org/10.1002/ppp.689

Runfola D, Anderson A, Baier H, Crittenden M, Dowker E, Fuhrig S, Goodman S, Grimsley G,

Layko R, Melville G, Mulder M, Oberman R, Panganiban J, Peck A, Seitz L, Shea S, Slevin H, Youngerman R & Hobbs L (2020) geoBoundaries: A global database of political administrative boundaries. PLoS One 15(1): e0231866. https://doi.org/10.1371/journal.pone.0231866

Ruuhijärvi R (1983) The Finnish mire types and their regional distribution. In Gore AJP (ed.)

Ecosystems of the World, 4B: Mires: Swamp, Bog, Fen and Moor. Regional Studies, 47–67. Elsevier, Amsterdam.

Ruuhijärvi R, Salminen P & Tuominen S (2022) Distribution range, morphological types and state

of palsa mires in Finland in the 2010s. Suo 73(1): 1–32.

Saemundsson T, Arnalds O, Kneisel C, Jonsson HP & Decaulne A (2012) The Orravatnsrustir palsa

site in Central Iceland – Palsas in an aeolian sedimentation environment. Geomorphology 167–168(1): 13–20. https://doi.org/10.1016/j.geomorph.2012.03.014

Salminen H, Tukiainen H, Alahuhta J, Hjort J, Huusko K, Grytnes JA, Pacheco-Riaño LC, Kapfer

J, Virtanen R & Maliniemi T (2023) Assessing the relation between geodiversity and species richness in mountain heaths and tundra landscapes. Landscape Ecology 38(1): 2227–2240. https://doi.org/10.1007/s10980-023-01702-1

Sannel ABK & Brown IA (2010) High-resolution remote sensing identification of thermokarst lake

dynamics in a subarctic peat plateau complex. Canadian Journal of Remote Sensing 36(sub1): S26–S40. https://doi.org/10.5589/m10-010

Sannel ABK & Kuhry P (2011) Warming-induced destabilization of peat plateau/thermokarst lake

complexes. Journal of Geophysical Research 116(G3): G03035. https://doi.org/10.1029/2010JG001635

Sannel ABK, Hugelius G, Jansson P & Kuhry P (2016) Permafrost warming in a subarctic peatland

– which meteorological controls are most important? Permafrost and Periglacial Processes 27(2): 177–188. https://doi.org/10.1002/PPP.1862

Sannel ABK (2020) Ground temperature and snow depth variability within a subarctic peat plateau

landscape. Permafrost and Periglacial Processes 31(2): 255–263. https://doi.org/10.1002/ppp.2045

Seemann F & Sannel ABK (2024) Morphology and dynamics of thermokarst ponds in a subarctic

permafrost peatland, northern Sweden. Earth Surface Processes and Landforms 49(15): 5377–5389. https://doi.org/10.1002/ESP.6021

Seppä H (2002) Mires of Finland: Regional and local vegetation, landforms, and long-term

dynamics. Fennia 180(1): 43–60.

Seppälä M (1972) The term ’palsa’. Zeitschrift für Geomorphologie 16(4): 463–463.

https://doi.org/10.1127/ZFG/16/1972/463

Seppälä M (1982) An experimental study of the formation of palsas. In French H (ed.) Proceedings

of the Fourth Canadian Permafrost Conference, 36–42. National Research Council of Canada, Ottawa.

Seppälä M (2011) Synthesis of studies of palsa formation underlining the importance of local

environmental and physical characteristics. Quaternary Research 75(2): 366–370. https://doi.org/10.1016/j.yqres.2010.09.007

Seppälä M (1986) The origin of palsas. Geografiska Annaler: Seriers A, Physical Geography 68(3):

–147. https://doi.org/10.1080/04353676.1986.11880167

Seppälä M (1988) Palsas and related forms. In Clark MJ (ed.) Advances in Periglacial

Geomorphology 247–278. John Wiley & Sons, Chichester.

Seppälä M (1994) Snow depth controls palsa growth. Permafrost and Periglacial Processes 5(4):

–288. https://doi.org/10.1002/PPP.3430050407

Seppälä M (2003) Surface abrasion of palsas by wind action in Finnish Lapland. Geomorphology

(1–2): 141–148. https://doi.org/10.1016/S0169-555X(02)00254-4

Seppälä M (2005) Dating of palsas. In Ojala E (ed.) Quaternary studies in the northern and Arctic regions in Finland, 79–84. Geological Survey of Finland.

Seppälä M (2006) Palsa mires in Finland. The Finnish Environment 23(1): 155–162.

Seppälä M & Kujala K (2009) The role of buoyancy in palsa formation. In Knight J & Harrison S

(eds.) Periglacial and Paraglacial Processes and Environments: Geological Society Special

Publication 320: 57–69. Geological Society, London.

Shangguan W, Hengl T, Mendes de Jesus J, Yuan H & Dai Y (2017) Mapping the global depth to

bedrock for land surface modeling. Journal of Advances in Modeling Earth Systems 9(1):

–88. https://doi.org/10.1002/2016MS000686

Smith AB & Santos MJ (2020) Testing the ability of species distribution models to infer variable

importance. Ecography 43(12): 1801–1813. https://doi.org/10.1111/ecog.05317

Sollid JL & Sørbel L (1998) Palsa bogs as a climate indicator - Examples from Dovrefjell, southern

Norway. Ambio 27(4): 287–291.

Støa B, Halvorsen R, Stokland JN & Gusarov VI (2019) How much is enough? Influence of

number of presence observations on the performance of species distribution models. Sommerfeltia 39(1): 1–28. https://doi.org/10.2478/som-2019-0001

Stoica P & Selén Y (2004) Model-order selection: a review of information criterion rules. IEEE

Signal Process Magazine 21(1): 36–47. https://doi.org/10.1109/MSP.2004.1311138

Strand SM, Christiansen HH, Johansson M, Åkerman J & Humlum O (2021) Active layer

thickening and controls on interannual variability in the Nordic Arctic compared to the circum-Arctic. Permafrost and Periglacial Processes 32(1): 47–58. https://doi.org/10.1002/PPP.2088

Tammilehto A, Härmä P, Kallio M, Törmä M, Saikkonen A, Tuominen S, Impiö M, Heikkinen M,

Kervinen M, Jussila T, Böttcher K, Pääkkö E, Kokko A, Mäkelä K & Anttila S (2024) Ylä-Lapin luonnon kaukokartoitus – Projektin loppuraportti osa 1 – Aineistot ja menetelmät. Metsähallitus, Vantaa.

Terentieva IE, Glagolev MV, Lapshina ED, Faritovich Sabrekov A & Maksyutov S (2016)

Mapping of West Siberian taiga wetland complexes using Landsat imagery: implications for methane emissions. Biogeosciences 13(16): 4615–4626. https://doi.org/10.5194/bg-13-4615-2016

Thibault S & Payette S (2009) Recent permafrost degradation in bogs of the James Bay area,

northern Quebec, Canada. Permafrost and Periglacial Processes 20(4), 383–389. https://doi.org/10.1002/PPP.660

Thuiller W, Georges D, Gueguen M, Engler R & Breiner F (2021) Biomod2: ensemble platform for

species distribution modelling. CRAN. https://cran.r-project.org/web/packages/biomod2/biomod2.pdf (accessed 13 January 2023)

Treat CC, Jones MC, Camill P, Gallego-Sala A, Garneau M, Harden JW, Hugelius G, Klein ES,

Kokfelt U, Kuhry P, Loisel J, Mathijssen PJH, O'Donnell JA, Oksanen PO, Ronkainen TM,

Sannel ABK, Talbot J, Tarnocai C & Väliranta M (2016) Effects of permafrost aggradation on peat properties as determined from a pan-Arctic synthesis of plant macrofossils. Journal of Geophysical Research: Biogeosciences 121(1): 78–94. https://doi.org/10.1002/2015JG003061

Treat CC & Jones MC (2018) Near-surface permafrost aggradation in Northern Hemisphere

peatlands shows regional and global trends during the past 6000 years. The Holocene 28(6): 998–1010. https://doi.org/10.1177/0959683617752858

Valman S, Siewert MB, Boyd D, Ledger M, Gee D, De La Barreda-Bautista B, Sowter A &

Sjögersten S (2024) InSAR-measured permafrost degradation of palsa peatlands in northern Sweden. The Cryosphere 18(4): 1773–1790. https://doi.org/10.5194/TC-18-1773-2024

Van Steenis J & Zuidhoff FS (2013) Hoverflies (Diptera: Syrphidae) of Laivadalen, a palsa bog in

northern Sweden, with notes on possible bio-indicator species. Entomologiska Tidskrift 134(1): 181–192.

Van Steenis J (2022) Endangered palsa mire hoverflies (Diptera, Syrphidae) in northern Sweden.

Mires and Peat 28(1): 20. https://doi.org/10.19189/MAP.2021.MEH.STA.2338

Van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T,

Krey V, Lamarque J-F, Masui T, Meinshausen M, Nakicenovic N, Smith SJ & Rose SK (2011) The representative concentration pathways: an overview. Climatic Change 109(1): 5–31. https://doi.org/10.1007/s10584-011-0148-z

Vasil’chuk YK, Vasil’chuk AC, Budantseva NA, Yoshikawa K, Chizhova JN & Stanilovskaya JV

(2013a) Palsas in the southern part of the Middle Siberia permafrost zone. Engineering Geology 3(1): 13–34.

Vasil’chuk YK, Vasil’chuk AC & Repkina TY (2013b) Palsas in the polar part of the Middle

Siberia permafrost zone (In Russian). Engineering Geology 2(1): 28–45.

Vasil’chuk YK, Budantseva NA, Vasil’chuk AC & Chizhova JN (2014) Palsas in the Eastern

Siberia and Far East permafrost zone (In Russian). Engineering Geology 1(1): 40–64.

Verdonen M, Störmer A, Lotsari E, Korpelainen P, Burkhard B, Colpaert A & Kumpula T (2023)

Permafrost degradation at two monitored palsa mires in north-west Finland. The Cryosphere 17(5): 1803–1819. https://doi.org/10.5194/TC-17-1803-2023

Verdonen M, Villoslada M, Tiina K, Kolari HM, Tahvanainen T, Korpelainen P, Tarolli P &

Kumpula T (2024) Spatial distribution of thaw depth in palsas estimated from optical unoccupied aerial systems data. Permafrost and Periglacial Processes 36(1): 22–36. https://doi.org/10.1002/PPP.2252

Vitt DH, Halsey LA & Zoltai SC (1994) The bog landforms of continental western Canada in

relation to climate and permafrost patterns. Arctic and Alpine Research 26(1): 1–13. https://doi.org/10.1080/00040851.1994.12003032

Vorren KD (2017) The first permafrost cycle in Faerdesmyra. Norwegian Journal of Geography

(2): 114–121. https://doi.org/10.1080/00291951.2017.1316309

Wang Y, Way RG & Beer J (2023) Multi-decadal degradation and fragmentation of palsas and peat

plateaus in coastal Labrador, northeastern Canada. Environmental Research Letters 19(1): 014009. https://doi.org/10.1088/1748-9326/AD0138

Ward Jones M, Habeck JO, Ulrich M, Crate S, Gannon G, Schwoerer T, Jones B, Kanevskiy M,

Baral P, Maharjan A, Steiner J, Spring A, Price MJ, Bysouth D, Forbes BC, Verdonen M, Kumpula T, Strauss J, Windirsch T, Poeplau C, Shur Y, Gaglioti B, Parlato N, Tao F, Turetsky M, Grand S, Unc A & Borchard N (2024) Socioecological dynamics of diverse global permafrost-agroecosystems under environmental change. Arctic, Antarctic, and Alpine Research 56(1): 2356067. https://doi.org/10.1080/15230430.2024.2356067

Washburn AL (1980). Permafrost features as evidence of climatic change. Earth-Science Reviews

(4): 327–402. https://doi.org/10.1016/0012-8252(80)90114-2

Washburn, A.L., (1983). What is a palsa? Abhandlungen der Akademie der Wissenschaften in

Göttingen, Mathematisch-Physikalische Klasse 35: 34–47.

Way RG & Lewkowicz AG (2018) Environmental controls on ground temperature and permafrost

in Labrador, northeast Canada. Permafrost and Periglacial Processes 29(2): 73–85. https://doi.org/10.1002/ppp.1972

Wood SN (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of

semiparametric generalized linear models. Journal of Royal Statistical Society Series B: Statistical Methodology 73(1): 3–36. https://doi.org/10.1111/J.1467-9868.2010.00749.X

Xu J, Morris PJ, Liu J & Holden J (2018) PEATMAP: refining estimates of global peatland

distribution based on a meta-analysis. Catena 160(1): 134–140. https://doi.org/10.1016/J.CATENA.2017.09.010

Yletyinen E (2023) Palsojen muutokset Paistuntureiden alueella viimeisten 50 vuoden aikana.

Master's Thesis, University of Oulu.

Zoltai SC & Tarnocai C (1971) Properties of a wooded palsa in northern Manitoba. Arctic and

Alpine Research 3(2): 115–129. https://doi.org/10.1080/00040851.1971.12003602

Zoltai SC (1972) Palsas and peat plateaus in central Manitoba and Saskatchewan. Canadian Journal

of Forest Research 2(3): 291–301. https://doi.org/10.1139/x72-046

Zoltai SC & Tarnocai C (1975) Perennially frozen peatlands in the western Arctic and subarctic of

Canada. Canadian Journal of Earth Sciences 12(1): 28–43. https://doi.org/10.1139/e75-004

Zoltai SC (1993) Cyclic development of permafrost in the peatlands of northwestern Alberta,

Canada. Arctic and Alpine Research 25(3): 240–246. https://doi.org/10.1080/00040851.1993.12003011

Zoltai SC, Siltanen RM & Johnson JD (2000) A wetland data base for the western boreal,

subarctic, and arctic regions of Canada. Information report NOR-X-368, Canadian Forest Service, Edmonton.

Zuidhoff FS & Kolstrup E (2000) Changes in palsa distribution in relation to climate change in

Laivadalen, northern Sweden, especially 1960–1997. Permafrost and Periglacial Processes 11(1): 55–69. https://doi.org/10.1002/(SICI)1099-1530(200001/03)11:1%3C55::AID-PPP338%3E3.0.CO;2-T

Zuidhoff FS & Kolstrup E (2005) Palsa development and associated vegetation in northern

Sweden. Arctic, Antarctic, and Alpine Research 37(1): 49–60.

https://doi.org/10.1657/1523-0430(2005)037[0049:PDAAVI]2.0.CO;2

Downloads

Published

2025-05-12

How to Cite

Palsa mires of the Northern Hemisphere: environmental characteristics, degradation, and morpho-ecological state. (2025). Nordia Geographical Publications, 54(3), 1-63. https://doi.org/10.30671/nordia.161627