Palsa mires of the Northern Hemisphere: environmental characteristics, degradation, and morpho-ecological state
DOI:
https://doi.org/10.30671/nordia.161627Abstract
Palsas are unique permafrost landforms that are found in the peatlands of discontinuous and sporadic permafrost regions across the Northern Hemisphere. Palsa mounds create diverse microhabitats for both plant and animal species, making them important features that support the biodiversity of periglacial environments. In addition to their ecological importance, palsa mires also are linked to the global carbon cycle and greenhouse gas emissions through permafrost degradation. Future thawing of permafrost is projected to release large amounts of greenhouse gases from northern peatlands, which can further accelerate global climate warming. Therefore, the changing permafrost dynamics make palsa mires an interesting and critical research topic, one
that can help us to better recognize and understand the ongoing and future changes in periglacial environments.
The main objective of this thesis is to provide a comprehensive understanding of the environmental factors influencing the occurrence and morpho-ecological
state of palsa mires, and to predict future changes in palsa distribution. To achieve this, the thesis employs a multi-scale approach, integrating remote sensing data and statistical modelling across spatial scales ranging from circumpolar to local. First, the environmental characteristics of palsa mires in different parts of the Northern Hemisphere are examined by regional comparisons. Second, circumpolar changes in the suitable environments for palsas are predicted under three different future trajectories of greenhouse gas concentrations. Finally, the morpho-ecological state and degradation of palsa mires at the local scale are investigated in northern Finland.
The results show that palsa mires occur in narrow but regionally varying environmental settings, with climatic factors and soil moisture conditions playing a key role in defining suitable environments for the landforms. Without effective climate change mitigation, environments suitable for palsas are projected to almost completely disappear in the northern permafrost region by the end of the century. This projection is consistent with observations showing the overall poor morpho-ecological state of Finnish palsa mires and their significant degradation over the past 50 years. The results also highlight
the scale-dependent influence of environmental factors for the occurrence and state of palsa mires. While climatic factors were consistently important across spatial scales, the influence of seasonal freeze-thaw dynamics and soil moisture varied between larger-scale and smaller-scale studies.
This thesis highlights the urgent need to understand the impacts of climate change on permafrost landscapes. The predicted dramatic loss of suitable environments for palsa mires underscores their vulnerability and the potential ecological consequences of their degradation. By integrating spatial modelling across different spatial scales, this thesis provides novel insights into the complex interplay between climatic and environmental factors governing the distribution and state of palsas. The results improve our understanding of the ongoing changes in the northern permafrost regions and provide valuable information to support policymakers in planning conservation efforts and in making sustainable decisions regarding permafrost regions and peatlands.
References
Aalto J & Luoto M (2014) Integrating climate and local factors for geomorphological distribution
models. Earth Surface Processes and Landforms 39(13): 1729–1740.
https://doi.org/10.1002/esp.3554
Aalto J, Venäläinen A, Heikkinen RK & Luoto M (2014) Potential for extreme loss in high-latitude
Earth surface processes due to climate change. Geophysical Research Letters 41(11):
–3924. https://doi.org/10.1002/2014GL060095
Aalto J, Harrison S & Luoto M (2017a) Statistical modelling predicts almost complete loss of major
periglacial processes in Northern Europe by 2100. Nature Communications 8(1): 1–8. https://doi.org/10.1038/s41467-017-00669-3
Aalto J, Riihimäki H, Meineri E, Hylander K & Luoto M (2017b) Revealing topoclimatic
heterogeneity using meteorological station data. International Journal of Climatology 37(S1): 544–556. https://doi.org/10.1002/JOC.5020
Aalto J, Karjalainen O, Hjort J & Luoto M (2018) Statistical forecasting of current and future
circum-Arctic ground temperatures and active layer thickness. Geophysical Research Letters 45(10): 4889–4898. https://doi.org/10.1029/2018GL078007
Åhman R (1977) Palsar i Nordnorge: En studie av palsars morfologi, utbredning och klimatiska
förutsättningar i Finnmarks och Troms fylke. Meddelanden från Lunds universitets
Geografiska institution Avhandlingar 78: 1–165.
Allouche O, Tsoar A & Kadmon R (2006) Assessing the accuracy of species distribution models:
prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43(6):
–1232. https://doi.org/10.1111/J.1365-2664.2006.01214.X
Andresen CG, Lawrence DM, Wilson CJ, McGuire AD, Koven C, Schaefer K, Jafarov E, Peng S,
Chen X, Gouttevin I, Burke E, Chadburn S, Ji D, Chen G, Hayes D & Zhang W (2020) Soil moisture and hydrology projections of the permafrost region – a model intercomparison. The Cryosphere 14(2): 445–459. https://doi.org/10.5194/tc-14-445-2020
Arctic Council (2013) Arctic biodiversity assessment: status and trends in Arctic biodiversity.
Arctic Council. https://www.arcticbiodiversity.is/index.php/the-report
Arlen-Pouliot Y & Bhiry N (2005) Palaeoecology of a palsa and a filled thermokarst pond in a
permafrost peatland, subarctic Québec, Canada. Holocene 15(3): 408–419. https://doi.org/10.1191/0959683605hl818rp
Atchley AL, Coon ET, Painter SL, Harp DR & Wilson CJ (2016) Influences and interactions of
inundation, peat, and snow on active layer thickness. Geophysical Research Letters 43(10): 5116–5123. https://doi.org/10.1002/2016GL068550
Atkinson PM & Tate NJ (2000) Spatial scale problems and geostatistical solutions: A review. The
Professional Geographer 52(4): 607–623. https://doi.org/10.1111/0033-0124.00250
Austin MP, Belbin L, Meyers JA, Doherty MD & Luoto M (2006) Evaluation of statistical models
used for predicting plant species distributions: Role of artificial data and theory. Ecological Modelling 199(2): 197–216. https://doi.org/10.1016/j.ecolmodel.2006.05.023
Biskaborn BK, Smith SL, Noetzli J, Matthes H, Vieira G, Streletskiy DA, Schoeneich P,
Romanovsky VE, Lewkowicz AG, Abramov A, Allard M, Boike J, Cable WL, Christiansen HH, Delaloye R, Diekmann B, Drozdov D, Etzelmüller B, Grosse G, Guglielmin M, Ingeman-Nielsen T, Isaksen K, Ishikawa M, Johansson M, Johannsson H, Joo A, Kaverin D, Malkova G, Meiklejohn I, Moskalenko N, Oliva M, Phillips M, Ramos M, Sannel ABK, Sergeev D, Seybold C, Skryabin P, Vasiliev A, Wu Q, Yoshikawa K, Zheleznyak M & Lantuit H (2019) Permafrost is warming at a global scale. Nature Communications 10(1): 264. https://doi.org/10.1038/s41467-018-08240-4
Borg I & Groenen PJF (2005) Modern Multidimensional Scaling. Springer, New York.
https://doi.org/10.1007/0-387-28981-X
Borge AF, Westermann S, Solheim I & Etzelmüller B (2017) Strong degradation of palsas and peat
plateaus in northern Norway during the last 60 years. The Cryosphere 11(1): 1–16. https://doi.org/10.5194/tc-11-1-2017
Bosiö J, Johansson M, Callaghan TV, Johansen B & Christensen TR (2012) Future vegetation
changes in thawing subarctic mires and implications for greenhouse gas exchange: A regional assessment. Climate Change 115(1): 379–398. https://doi.org/10.1007/s10584-012-0445-1
Breiman L (2001) Random forests. Machine Learning 45(1): 5–32.
https://doi.org/10.1023/A:1010933404324
Brown J, Ferrians OJ, Heginbottom JA & Melnikov ES (1997) International Permafrost
Association Circum-Arctic Map of Permafrost and Ground Ice Conditions, Map CP-45. US
Geological Survey. https://doi.org/10.3133/CP45
Brown J, Ferrians OJJ, Heginbottom JA & Melnikov ES (2002) Circum-Arctic Map of Permafrost
and Ground-Ice Conditions, Version 2. National Snow and Ice Data Center. https://nsidc.org/data/ggd318/versions/2 (accessed 20 October 2024)
Camill P (1999) Patterns of boreal permafrost peatland vegetation across environmental gradients
sensitive to climate warming. Canadian Journal of Botany 77(5): 721–733. https://doi.org/10.1139/b99-008
Christiansen HH, Etzelmüller B, Isaksen K, Juliussen H, Farbrot H, Humlum O, Johansson M,
Ingeman-Nielsen T, Kristensen L, Hjort J, Holmlund P, Sannel ABK, Sigsgaard C, Åkerman HJ, Foged N, Blikra LH, Pernosky MA & Ødegård RS (2010) The thermal state of permafrost in the nordic area during the international polar year 2007–2009. Permafrost and Periglacial Processes 21(2): 156–181. https://doi.org/10.1002/PPP.687
Conrad O, Bechtel B, Bock M, Dietrich H, Fischer E, Gerlitz L, Wehberg J, Wichmann V &
Böhner J (2015) System for automated geoscientific analyses (SAGA) v. 2.1.4. Geoscientific Model Development 8(7): 1991–2007. https://doi.org/10.5194/gmd-8-1991-2015
Cyr S & Payette S (2010) The origin and structure of wooded permafrost mounds at the arctic
treeline in eastern Canada. Plant Ecology and Diversity 3(1): 35–46. https://doi.org/10.1080/17550871003777176
Czekirda J, Westermann S, Etzelmüller B & Jóhannesson T (2019) Transient modelling of
permafrost distribution in Iceland. Frontiers in Earth Science 7(1): 130. https://doi.org/10.3389/feart.2019.00130
Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JRG, Gruber B,
Lafourcade B, Leitão PJ, Münkemüller T, McClean C, Osborne PE, Reineking B, Schröder B, Skidmore AK, Zurell D & Lautenbach S (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36(1): 27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x
Elith J, Graham H, Anderson P, Dudík M, Ferrier S, Guisan A, Hijmans R, Huettmann F,
Leathwick J, Lehmann A, Li J, Lohmann G, Loiselle B, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton J, Peterson AT, Phillips S, Richardson K, Scachetti-Pereira R, Schapire RE, Soberón J, Williams S, Wisz ME & Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29(2): 129–151. https://doi.org/10.1111/J.2006.0906-7590.04596.X
Elith J & Leathwick JR (2009) Species distribution models: ecological explanation and prediction
across space and time. Annual Review of Ecology, Evolution, and Systematics 40(1): 677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159
Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE & Yates CJ (2011) A statistical explanation of
MaxEnt for ecologists. Diversity and Distributions 17(1): 43–57. https://doi.org/10.1111/J.1472-4642.2010.00725.X/PDF
Elmendorf SC, Henry GHR, Hollister RD, Björk RG, Boulanger-Lapointe N, Cooper EJ,
Cornelissen JHC, Day TA, Dorrepaal E, Elumeeva TG, Gill M, Gould WA, Harte J, Hik DS, Hofgaard A, Johnson DR, Johnstone JF, Jónsdóttir IS, Jorgenson JC, Klanderud K, Klein JA, Koh S, Kudo G, Lara M, Lévesque E, Magnússon B, May JL, Mercado-Díaz JA, Michelsen A, Molau, U, Myers-Smith IH, Oberbauer SF, Onipchenko VG, Rixen C, Schmidt NM, Shaver GR, Spasojevic MJ, Pórhallsdóttir PE, Tolvanen A, Troxler T, Tweedie CE, Villareal S, Wahren CH, Walker X, Webber PJ, Welker JM & Wipf S (2012) Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nature Climate Change 2(1): 453–457. https://doi.org/10.1038/nclimate1465
Emmert A & Kneisel C (2021) Internal structure and palsa development at Orravatnsrústir Palsa
Site (Central Iceland), investigated by means of integrated resistivity and ground-penetrating radar methods. Permafrost and Periglacial Processes 32(3): 503–519. https://doi.org/10.1002/PPP.2106
Errington RC, Macdonald SE & Bhatti JS (2024) Rate of permafrost thaw and associated plant
community dynamics in peatlands of northwestern Canada. Journal of Ecology 112(7):
–1582. https://doi.org/10.1111/1365-2745.14339
Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ & Taylor KE (2016) Overview of
the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development 9(5): 1937–1958. https://doi.org/10.5194/gmd-9-1937-2016
Eythorsson D, Gardarsson SM, Gunnarsson A & Sveinsson OGB (2023) Observed and predicted
trends in Icelandic snow conditions for the period 1930–2100. The Cryosphere 17(1): 51–62. https://doi.org/10.5194/tc-17-51-2023
Feng X, Park DS, Liang Y, Pandey R & Papeş M (2019) Collinearity in ecological niche modeling:
Confusions and challenges. Ecology and Evolution 9(18): 10365–10376. https://doi.org/10.1002/ece3.5555
Fewster RE, Morris PJ, Swindles GT, Gregoire LJ, Ivanovic RF, Valdes PJ, Mullan D (2020)
Drivers of Holocene palsa distribution in North America. Quaternary Science Reviews 240(1): 106337. https://doi.org/10.1016/j.quascirev.2020.106337
Fewster RE, Morris PJ, Ivanovic RF, Swindles GT, Peregon AM & Smith CJ (2022) Imminent loss
of climate space for permafrost peatlands in Europe and Western Siberia. Nature Climate Change 12(1): 373–379. https://doi.org/10.1038/s41558-022-01296-7
Fick SE & Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for
global land areas. International Journal of Climatology 37(12): 4302–4315. https://doi.org/10.1002/JOC.5086
Finnish Meteorological Institute (2024) Temperature and precipitation statistics from 1961 onwards.
https://en.ilmatieteenlaitos.fi/statistics-from-1961-onwards (accessed 2 July 2024).
French H (2017) The Periglacial Environment. Wiley and Sons, Chichester.
https://doi.org/10.1002/9781119132820
Fries T & Bergström E (1910) Några iakttagelser över palsar och deras förekomst i nordligaste
Sverige. Geologiska Foreningens I Stockholm Forhandlinger 32(1): 195–205.
Fronzek S, Luoto M & Carter T (2006) Potential effect of climate change on the distribution of
palsa mires in subarctic Fennoscandia. Climate Research 32(1): 1–12. https://doi.org/10.3354/cr032001
Gisnås K, Etzelmüller B, Lussana C, Hjort J, Sannel ABK, Isaksen K, Westermann S, Kuhry P,
Christiansen HH, Frampton A & Åkerman J (2017) Permafrost Map for Norway, Sweden and Finland. Permafrost and Periglacial Processes 28(2): 359–378. https://doi.org/10.1002/ppp.1922
Glagolev M, Kleptsova I, Filippov I, Maksyutov S & Machida T (2011) Regional methane emission
from West Siberia mire landscapes. Environmental Research Letters 6(4): 045214. https://doi.org/10.1088/1748-9326/6/4/045214
Grosse G & Jones BM (2011) Spatial distribution of pingos in northern Asia. The Cryosphere 5(1):
–33. https://doi.org/10.5194/tc-5-13-2011
Guiasu S & Shenitzer A (1985) The principle of maximum entropy. The Mathematical Intelligencer
: 42–48. https://doi.org/10.1007/BF03023004
Guisan A & Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecological
Modelling 135(1): 147–186. https://doi.org/10.1016/S0304-3800(00)00354-9
Gurney SD (2001) Aspects of the genesis, geomorphology and terminology of palsas: perennial
cryogenic mounds. Progress in Physical Geography 25(2): 249–260. https://doi.org/10.1177/030913330102500205
Hanley JA & McNeil BJ (1982) The meaning and use of the area under a receiver operating
characteristic (ROC) curve. Radiology 143(1): 29–36. https://doi.org/10.1148/radiology.143.1.7063747
Hastie T & Tibshirani R (1986) Generalized Additive Models. Statistical Science 1: 297–318.
Heikkinen RK, Leikola N, Aalto J, Aapala K, Kuusela S, Luoto M & Virkkala R (2020)
Fine-grained climate velocities reveal vulnerability of protected areas to climate change. Scientific Reports 10(1): 1678. https://doi.org/10.1038/s41598-020-58638-8
Higgins KL & Garon-Labrecque MÈ (2018) Fine-scale influences on thaw depth in a forested
peat plateau landscape in the Northwest Territories, Canada: Vegetation trumps microtopography. Permafrost and Periglacial Processes 29(1): 60–70. https://doi.org/10.1002/PPP.1961
Hijmans RJ, Cameron SE, Parra JL, Jones PG & Jarvis A (2005) Very high resolution interpolated
climate surfaces for global land areas. International Journal of Climatology 25(15): 1965–1978. https://doi.org/10.1002/joc.1276
Hijmans RJ, Phillips S, Leathwick J & Elith J (2021) dismo: Species Distribution Modeling. R
package version 1.3-5. https://CRAN.R-project.org/package=dismo (accessed 14 October 2024)
Hirakawa K (1986) Development of a palsa bog in central highland, Iceland. Geographical Reports
of Tokyo Metropolitan University 21(1): 111–122.
Hjort J & Luoto M (2013) Statistical methods for geomorphic distribution modeling. In Shroder JF
& Baas ACW (eds.) Treatise on Geomorphology vol 2, Quantitative Modeling of Geomorphology, 59–73. Academic Press, San Diego. https://doi.org/10.1016/B978-0-12-374739-6.00028-2
Hjort J, Gordon JE, Gray M & Hunter ML (2015) Why geodiversity matters in valuing nature’s
stage. Conservation Biology 29(3): 630–639. https://doi.org/10.1111/COBI.12510
Hjort J, Streletskiy D, Doré G, Wu Q, Bjella K & Luoto M (2022) Impacts of permafrost
degradation on infrastructure. Nature Reviews Earth & Environment 3(1): 24–38. https://doi.org/10.1038/s43017-021-00247-8
Hugelius G, Loisel J, Chadburn S, Jackson RB, Jones M, MacDonald G, Marushchak M, Olefeldt
D, Packalen M, Siewert MB, Treat C, Turetsky M, Voigt C & Yu Z (2020) Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proceedings of the National Academy of Sciences of the United States of America 117(34): 20438–20446. https://doi.org/10.1073/pnas.1916387117
IPCC (2021) Climate change 2021: The physical science basis. Working Group I contribution to
the Sixth Assessment Report. The Intergovernmental Panel on Climate Change.
https://www.ipcc.ch/report/ar6/wg1/ (accessed 8 August 2024)
Janssen JAM, Rodwell JS, García Criado M, Gubbay S, Haynes T, Nieto A, Sanders N, Landucci F,
Loidi J, Ssymank AT, Ahvanainen T, Valderrabano M, Acosta A, Aronsson M, Arts G, Attorre F, Bergmeier E, Bijlsma RJ, Bioret F, Bita-Nicolae C, Biurrun I, Calix M, Capelo J, Cami A, Chytrý M, Dengler J, Dimopoulos P, Essl F, Gardfjell H, Gigante D, Giusso del Galdo G, Hájek M, Jansen F, Jansen J, Kapfer J, Mickolajczak A, Molina JA, Molznár Z, Paternoster D, Piernik A, Poulin B, Renaux B, Schaminée JHJ, Sumberová K, Toivonen H, Tonteri T, Tsiripidis I, Tzonev R & Valachovic M (2016). European Red List of Habitats. Part 2. Terrestrial and freshwater habitats European Red List of Habitats Environment. https://doi.org/10.2779/091372
Järvinen O & Sammalisto L (1976). Regional trends in the avifauna of Finnish peatland bogs.
Annales Zoologici Fennici 13(1): 31–43.
Järvinen O & Väisänen RA (1976). Species diversity of Finnish birds, II: Biotopes at the transition
between taiga and tundra. Acta Zoologica Fennica 145(1): 1–35.
Järvinen O, Kouki J & Häyrinen U (1987) Reversed latitudinal gradients in total density and
species richness of birds breeding on Finnish mires. Ornis Fennica 64(2): 67–73.
Jean M & Payette S (2014a) Effect of vegetation cover on the ground thermal regime of wooded
and non-wooded palsas. Permafrost and Periglacial Processes 25(4): 281–294. https://doi.org/10.1002/PPP.1817
Jean M & Payette S (2014b) Dynamics of active layer in wooded palsas of northern Quebec.
Geomorphology 206(1): 87–96. https://doi.org/10.1016/J.GEOMORPH.2013.10.001
Johansson M, Callaghan TV, Bosiö J, Åkerman JH, Jackowicz-Korczynski M & Christensen TR
(2013) Rapid responses of permafrost and vegetation to experimentally increased snow cover in sub-arctic Sweden. Environmental Research Letters, 8, 035025. https://doi.org/10.1088/1748-9326/8/3/035025
Johnson KD, Harden JW, McGuire AD, Clark M, Yuan F & Finley AO (2013) Permafrost and
organic layer interactions over a climate gradient in a discontinuous permafrost zone. Environmental Research Letters 8(1): 035028. https://doi.org/10.1088/1748-9326/8/3/035028
Jones BM, Baughman CA, Romanovsky VE, Parsekian AD, Babcock EL, Stephani E, Jones MC,
Grosse G & Berg EE (2016) Presence of rapidly degrading permafrost plateaus in south-central Alaska. The Cryosphere 10(6): 2673–2692. https://doi.org/10.5194/TC-10-2673-2016
Karjalainen O, Luoto M, Aalto J. Etzelmüller B, Grosse G, Jones BM, Lilleøren KS & Hjort J
(2020) High potential for loss of permafrost landforms in a changing climate. Environmental Research Letters 15(10): 104065. https://doi.org/10.1088/1748-9326/abafd5
Kass JM, Muscarella R, Galante PJ, Bohl CL, Pinilla-Buitrago GE, Boria RA, Soley-Guardia M &
Anderson RP (2021) ENMeval 2.0: Redesigned for customizable and reproducible modeling of species’ niches and distributions. Methods in Ecology and Evolution 12(9): 1602–1608. https://doi.org/10.1111/2041-210X.13628
Kellerer-Pirklbauer A, Farbrot H & Etzelmüller B (2007) Permafrost aggradation caused by tephra
accumulation over snow-covered surfaces: Examples from the Hekla-2000 eruption in
Iceland. Permafrost and Periglacial Processes 18(3): 269–284. https://doi.org/10.1002/PPP.596
Larsen JN & Fondahl G (2015) Arctic human development report: regional processes and global
linkages. Nordic Council of Ministers, Copenhagen.
Leppiniemi O, Karjalainen O, Aalto J, Luoto M & Hjort J (2023) Environmental spaces for palsas
and peat plateaus are disappearing at a circumpolar scale. The Cryosphere 17(8): 3157–3176. https://doi.org/10.5194/TC-17-3157-2023
Leppiniemi O, Karjalainen O, Aalto J, Luoto M & Hjort J (2025) Environmental drivers of palsa
and peat plateau occurrences: A regional comparison across the Northern Hemisphere. Permafrost and Periglacial Processes 36(1): 37–50. https://doi.org/10.1002/PPP.2253
Leppiniemi O, Karjalainen O, Aalto J, Yletyinen E, Luoto M & Hjort J (Manuscript) The
morpho-ecological state of palsa mires: insights from high-resolution spatial modelling.
Li W & Hsu CY (2022) GeoAI for large-scale image analysis and machine vision: Recent progress
of artificial intelligence in geography. ISPRS International Journal of Geo-Information 11(7): 385. https://doi.org/10.3390/ijgi11070385
Lloyd CD (2014) Exploring spatial scale in geography. John Wiley & Sons, Chichester.
Luoto M & Seppälä M (2002) Modelling the distribution of palsas in Finnish Lapland with logistic
regression and GIS. Permafrost and Periglacial Processes 13(1): 17–28. https://doi.org/10.1002/ppp.404
Luoto M & Seppälä M (2003) Thermokarst ponds as indicators of the former distribution of palsas
in Finnish Lapland. Permafrost and Periglacial Processes 14(1): 19–27. https://doi.org/10.1002/ppp.441
Luoto M, Fronzek S & Zuidhoff FS (2004a) Spatial modelling of palsa mires in relation to climate
in Northern Europe. Earth Surface Processes and Landforms 29(11): 1373–1387. https://doi.org/10.1002/esp.1099
Luoto M, Heikkinen RK & Carter TR (2004b) Loss of palsa mires in Europe and biological
consequences. Environmental Conservation 31(1): 30–37. https://doi.org/10.1017/S0376892904001018
Maliniemi T, Kapfer J, Saccone P, Skog A & Virtanen R (2018) Long-term vegetation changes of
treeless heath communities in northern Fennoscandia: Links to climate change trends and reindeer grazing. Journal of Vegetation Science 29(3): 469–479. https://doi.org/10.1111/jvs.12630
Mamet SD, Chun KP, Kershaw GGL, Loranty MM & Kershaw P (2017) Recent increases in
permafrost thaw rates and areal loss of palsas in the western Northwest Territories, Canada. Permafrost and Periglacial Processes 28(4): 619–633. https://doi.org/10.1002/ppp.1951
Markkula I (2014) Permafrost dynamics structure species compositions of oribatid mite (Acari:
Oribatida) communities in sub-Arctic palsa mires. Polar Research 33(1): 22926. https://doi.org/10.3402/polar.v33.22926
Martin LCP, Nitzbon J, Aas KS, Etzelmüller B, Kristiansen H & Westermann S (2019) Stability
conditions of peat plateaus and palsas in Northern Norway. Journal of Geophysical Research: Earth Surface 124(3): 705–719. https://doi.org/10.1029/2018JF004945
Martin LCP, Nitzbon J, Scheer J, Aas KS, Eiken T, Langer M, Filhol S, Etzelmüller B &
Westermann S (2021) Lateral thermokarst patterns in permafrost peat plateaus in northern Norway. The Cryosphere 15(8): 3423–3442. https://doi.org/10.5194/tc-15-3423-2021
Meinshausen M, Nicholls ZRJ, Lewis J, Gidden MJ, Vogel E, Freund M, Beyerle U, Gessner C,
Nauels A, Bauer N, Canadell JG, Daniel JS, John A, Krummel PB, Luderer G, Meinshausen N, Montzka SA, Rayner PJ, Reimann S, Smith SJ, van den Berg M, Velders GJM, Vollmer MK & Wang RHJ (2020) The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geoscientific Model Development 13(8): 3571–3605. https://doi.org/10.5194/gmd-13-3571-2020
Mekonnen ZA, Riley WJ, Grant RF & Romanovsky VE (2021) Changes in precipitation and air
temperature contribute comparably to permafrost degradation in a warmer climate. Environmental Research Letters 16(2): 024008. https://doi.org/10.1088/1748-9326/abc444
Meloun M, Militký J, Hill M & Brereton RG (2002) Crucial problems in regression modelling and
their solutions. The Analyst 127(4): 433–450. https://doi.org/10.1039/b110779h
Möller R, Römer W, Möller M, Wollenberg U, Lehmkuhl F, Schneider C & Kukla PA (2020)
Thermal conductivity of supraglacial volcanic deposits in Iceland. International Journal of Earth Sciences 109(2): 569–585. https://doi.org/10.1007/s00531-020-01820-0
Myers-Smith IH, Elmendorf SC, Beck PSA, Wilmking M, Hallinger M, Blok D, Tape KD,
Rayback SA, Macias-Fauria M, Forbes BC, Speed JDM, Boulanger-Lapointe N, Rixen C, Lévesque E, Schmidt NM, Baittinger C, Trant AJ, Hermanutz L, Collier LS, Dawes MA, Lantz TC, Weijers S, Jørgensen RH, Buchwal A, Buras A, Naito AT, Ravolainen V, Schaepman-Strub G, Wheeler JA, Wipf S, Guay KC, Hik DS & Vellend M (2015) Climate sensitivity of shrub growth across the tundra biome. Nature Climate Change 5(9): 887–891. https://doi.org/10.1038/nclimate2697
National Land Survey of Finland (2024) Hillshade (elevation model).
https://www.maanmittauslaitos.fi/en/maps-and-spatial-data/datasets-and-interfaces/product-descriptions/hillshade (accessed 17 October 2024).
Oksanen J, Simpson GL, Blanchet GF, Kindt R, Legendre P, Minchin PR, O’Hara RB, Solymos P,
Stevens HMH, Szoecs E, Wagner H, Barbour M, Bedward M, Bolker B, Bocard D, Carvalho G, Chirico M, De Caceres M, Durant S, Antoniazi Evangelista HB, FitzJohn R, Friendly M, Furneaux B, Hannigan G, Hill MO, Lahti L, McGlinn D, Ouellette MH, Ribeiro Cunha E, Smith T, Stier A, Ter Braak CJF & Weedon J (2024) vegan: Community Ecology Package. https://doi.org/10.32614/CRAN.PACKAGE.VEGAN (accessed 8 October 2024)
Oksanen PO, Kuhry P & Alekseeva RN (2001). Holocene development of the Rogovaya River peat
plateau, European Russian Arctic. The Holocene 11(1): 25–40. https://doi.org/10.1191/095968301675477157.
Oksanen PO, Kuhry P & Alekseeva RN (2003). Holocene development and permafrost history of
the Usinsk Mire, northeast European Russia. Geographie Physique et Quaternaire 57(2): 169–187. https://doi.org/10.7202/011312AR.
Oksanen PO (2008) Holocene development of the Vaisjeäggi palsa mire, Finnish Lapland. Boreas
(1): 81–95. https://doi.org/10.1111/j.1502-3885.2006.tb01114.x.
Olefeldt D, Goswami S, Grosse G, Hayes D, Hugelius G, Kuhry P, McGuire AD, Romanovsky VE,
Sannel ABK, Schuur EAG & Turetsky MR (2016) Circumpolar distribution and carbon storage of thermokarst landscapes. Nature Communications 7(1): 13043. https://doi.org/10.1038/ncomms13043.
Olefeldt D, Hovemyr M, Kuhn MA, Bastviken D, Bohn TJ, Connolly J, Crill P, Euskirchen ES,
Finkelstein SA, Genet H, Grosse G, Harris LI, Heffernan L, Helbig M, Hugelius G, Hutchins R, Juutinen S, Lara MJ, Malhotra A, Manies K, McGuire AD, Natali SM, O’Donnell JA, Parmentier FJW, Räsänen A, Schädel C, Sonnentag O, Strack M, Tank SE, Treat C, Varner RK, Virtanen T, Warren RK & Watts JD (2021) The boreal-arctic wetland and lake dataset (BAWLD). Earth System Science Data 13(12): 5127–5149. https://doi.org/10.5194/ESSD-13-5127-2021.
Olvmo M, Holmer B, Thorsson S, Reese H & Lindberg F (2020) Sub-arctic palsa degradation and
the role of climatic drivers in the largest coherent palsa mire complex in Sweden (Vissátvuopmi), 1955–2016. Scientific Reports 10(1): 8937. https://doi.org/10.1038/s41598-020-65719-1.
O’Neill BC, Tebaldi C, van Vuuren DP, Eyring V, Friedlingstein P, Hurtt G, Knutti R, Kriegler E,
Lamarque JF, Lowe J, Meehl GA, Moss R, Riahi K & Sanderson BM (2016) The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geoscientific Model Development 9(9): 3461–3482. https://doi.org/10.5194/gmd-9-3461-2016.
Ottósson JG, Sveinsdóttir A & Harðardóttir M (2016). Vistgerðir á Íslandi. Fjölrit
Publication Series 54. Icelandic Institute of Natural History, Garðabær.
Outcalt SI & Nelson F (1984) Computer Simulation of Buoyancy and Snow-Cover Effects in Palsa
Dynamics. Arctic and Alpine Research 16(2): 259–263. https://doi.org/10.1080/00040851.1984.12004413.
Outcalt SI, Nelson FE & Hinkel KM (1990) The zero‐curtain effect: Heat and mass transfer across
an isothermal region in freezing soil. Water Resources Research 26(7): 1509–1516. https://doi.org/10.1029/WR026i007p01509.
Parviainen M & Luoto M (2007) Climate envelopes of mire complex types in Fennoscandia.
Geografiska Annaler: Series A, Physical Geography 89(2): 137–151. https://doi.org/10.1111/j.1468-0459.2007.00314.x.
Payette S, Delwaide A, Caccianiga M & Beauchemin M (2004) Accelerated thawing of subarctic
peatland permafrost over the last 50 years. Geophysical Research Letters 31(18): L18208. https://doi.org/10.1029/2004GL020358.
Persson A, Hasan A, Tang J & Pilesjö P (2012) Modelling flow routing in permafrost landscapes
with TWI: An evaluation against site-specific wetness measurements. Transactions in GIS 16(5): 701–713. https://doi.org/10.1111/j.1467-9671.2012.01338.x
Phillips JD (2006) Evolutionary geomorphology: thresholds and nonlinearity in landform response
to environmental change. Hydrology and Earth System Sciences 10(5): 731–742. https://doi.org/10.5194/hess-10-731-2006
Phillips SJ & Dudík M (2008) Modeling of species distributions with Maxent: new extensions and
a comprehensive evaluation. Ecography 31(2): 161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x
Phillips SJ, Anderson RP, Dudík M, Schapire RE & Blair ME (2017) Opening the black box: an
open-source release of Maxent. Ecography 40(7): 887–893. https://doi.org/10.1111/ecog.03049
Pissart A (2002) Palsas, lithalsas and remnants of these periglacial mounds. A progress report.
Progress in Physical Geography 26(4): 605–621. https://doi.org/10.1191/0309133302pp354ra
Poggio L, De Sousa LM, Batjes NH, Heuvelink GBM, Kempen B, Ribeiro E & Rossiter D (2021)
SoilGrids 2.0: Producing soil information for the globe with quantified spatial uncertainty. SOIL 7(1): 217–240. https://doi.org/10.5194/soil-7-217-2021
Post E, Forchhammer MC, Bret-Harte MS, Callaghan TV, Christensen TR, Elberling B, Fox AD,
Gilg O, Hik DS, Høye TT, Ims RA, Jeppesen E, Klein DR, Madsen J, McGuire AD, Rysgaard S, Schindler DE, Stirling I, Tamstorf MP, Tyler NJC, Van Der Wal R, Welker J, Wookey PA, Schmidt NM & Aastrup P (2009) Ecological dynamics across the Arctic associated with recent climate change. Science 325(5946): 1355–1358. https://doi.org/10.1126/science.1173113
R Core Team (2023) R: A language and environment for statistical computing. R Foundation for
Statistical Computing, Vienna. https://www.R-project.org/ (accessed 14 October 2024)
Railton JB & Sparling JH (1973) Preliminary studies on the ecology of palsa mounds in northern
Ontario. Canadian Journal of Botany 51(5): 1037–1044. https://doi.org/10.1139/b73-128
Ran Y, Li X, Cheng G, Che J, Aalto J, Karjalainen O, Hjort J, Luoto M, Jin H, Obu J, Hori M, Yu
Q & Chang X (2022) New high-resolution estimates of the permafrost thermal state and hydrothermal conditions over the Northern Hemisphere. Earth System Science Data 14(2): 865–884. https://doi.org/10.5194/essd-14-865-2022
Rantanen M, Karpechko AYu, Lipponen A, Nordling K, Hyvärinen O, Ruosteenoja K, Vihma T &
Laaksonen A (2022) The Arctic has warmed nearly four times faster than the globe since 1979. Communications Earth & Environment 3(1): 168. https://doi.org/10.1038/s43247-022-00498-3
Renette C, Olvmo M, Thorsson S, Holmer B & Reese H (2024) Multitemporal UAV lidar detects
seasonal heave and subsidence on palsas. The Cryosphere 18(11): 5465–5480. https://doi.org/10.5194/tc-18-5465-2024
Roberts DR, Bahn V, Ciuti S, Boyce MS, Elith J, Guillera-Arroita G, Hauenstein S, Lahoz-Monfort
JJ, Schröder B, Thuiller W, Warton DI, Wintle BA, Hartig F & Dormann CF (2017) Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 40(8): 913–329. https://doi.org/10.1111/ecog.02881
Romanovsky VE, Smith SL & Christiansen HH (2010) Permafrost thermal state in the polar
Northern Hemisphere during the international polar year 2007–2009: a synthesis. Permafrost and Periglacial Processes 21(2): 106–116. https://doi.org/10.1002/ppp.689
Runfola D, Anderson A, Baier H, Crittenden M, Dowker E, Fuhrig S, Goodman S, Grimsley G,
Layko R, Melville G, Mulder M, Oberman R, Panganiban J, Peck A, Seitz L, Shea S, Slevin H, Youngerman R & Hobbs L (2020) geoBoundaries: A global database of political administrative boundaries. PLoS One 15(1): e0231866. https://doi.org/10.1371/journal.pone.0231866
Ruuhijärvi R (1983) The Finnish mire types and their regional distribution. In Gore AJP (ed.)
Ecosystems of the World, 4B: Mires: Swamp, Bog, Fen and Moor. Regional Studies, 47–67. Elsevier, Amsterdam.
Ruuhijärvi R, Salminen P & Tuominen S (2022) Distribution range, morphological types and state
of palsa mires in Finland in the 2010s. Suo 73(1): 1–32.
Saemundsson T, Arnalds O, Kneisel C, Jonsson HP & Decaulne A (2012) The Orravatnsrustir palsa
site in Central Iceland – Palsas in an aeolian sedimentation environment. Geomorphology 167–168(1): 13–20. https://doi.org/10.1016/j.geomorph.2012.03.014
Salminen H, Tukiainen H, Alahuhta J, Hjort J, Huusko K, Grytnes JA, Pacheco-Riaño LC, Kapfer
J, Virtanen R & Maliniemi T (2023) Assessing the relation between geodiversity and species richness in mountain heaths and tundra landscapes. Landscape Ecology 38(1): 2227–2240. https://doi.org/10.1007/s10980-023-01702-1
Sannel ABK & Brown IA (2010) High-resolution remote sensing identification of thermokarst lake
dynamics in a subarctic peat plateau complex. Canadian Journal of Remote Sensing 36(sub1): S26–S40. https://doi.org/10.5589/m10-010
Sannel ABK & Kuhry P (2011) Warming-induced destabilization of peat plateau/thermokarst lake
complexes. Journal of Geophysical Research 116(G3): G03035. https://doi.org/10.1029/2010JG001635
Sannel ABK, Hugelius G, Jansson P & Kuhry P (2016) Permafrost warming in a subarctic peatland
– which meteorological controls are most important? Permafrost and Periglacial Processes 27(2): 177–188. https://doi.org/10.1002/PPP.1862
Sannel ABK (2020) Ground temperature and snow depth variability within a subarctic peat plateau
landscape. Permafrost and Periglacial Processes 31(2): 255–263. https://doi.org/10.1002/ppp.2045
Seemann F & Sannel ABK (2024) Morphology and dynamics of thermokarst ponds in a subarctic
permafrost peatland, northern Sweden. Earth Surface Processes and Landforms 49(15): 5377–5389. https://doi.org/10.1002/ESP.6021
Seppä H (2002) Mires of Finland: Regional and local vegetation, landforms, and long-term
dynamics. Fennia 180(1): 43–60.
Seppälä M (1972) The term ’palsa’. Zeitschrift für Geomorphologie 16(4): 463–463.
https://doi.org/10.1127/ZFG/16/1972/463
Seppälä M (1982) An experimental study of the formation of palsas. In French H (ed.) Proceedings
of the Fourth Canadian Permafrost Conference, 36–42. National Research Council of Canada, Ottawa.
Seppälä M (2011) Synthesis of studies of palsa formation underlining the importance of local
environmental and physical characteristics. Quaternary Research 75(2): 366–370. https://doi.org/10.1016/j.yqres.2010.09.007
Seppälä M (1986) The origin of palsas. Geografiska Annaler: Seriers A, Physical Geography 68(3):
–147. https://doi.org/10.1080/04353676.1986.11880167
Seppälä M (1988) Palsas and related forms. In Clark MJ (ed.) Advances in Periglacial
Geomorphology 247–278. John Wiley & Sons, Chichester.
Seppälä M (1994) Snow depth controls palsa growth. Permafrost and Periglacial Processes 5(4):
–288. https://doi.org/10.1002/PPP.3430050407
Seppälä M (2003) Surface abrasion of palsas by wind action in Finnish Lapland. Geomorphology
(1–2): 141–148. https://doi.org/10.1016/S0169-555X(02)00254-4
Seppälä M (2005) Dating of palsas. In Ojala E (ed.) Quaternary studies in the northern and Arctic regions in Finland, 79–84. Geological Survey of Finland.
Seppälä M (2006) Palsa mires in Finland. The Finnish Environment 23(1): 155–162.
Seppälä M & Kujala K (2009) The role of buoyancy in palsa formation. In Knight J & Harrison S
(eds.) Periglacial and Paraglacial Processes and Environments: Geological Society Special
Publication 320: 57–69. Geological Society, London.
Shangguan W, Hengl T, Mendes de Jesus J, Yuan H & Dai Y (2017) Mapping the global depth to
bedrock for land surface modeling. Journal of Advances in Modeling Earth Systems 9(1):
–88. https://doi.org/10.1002/2016MS000686
Smith AB & Santos MJ (2020) Testing the ability of species distribution models to infer variable
importance. Ecography 43(12): 1801–1813. https://doi.org/10.1111/ecog.05317
Sollid JL & Sørbel L (1998) Palsa bogs as a climate indicator - Examples from Dovrefjell, southern
Norway. Ambio 27(4): 287–291.
Støa B, Halvorsen R, Stokland JN & Gusarov VI (2019) How much is enough? Influence of
number of presence observations on the performance of species distribution models. Sommerfeltia 39(1): 1–28. https://doi.org/10.2478/som-2019-0001
Stoica P & Selén Y (2004) Model-order selection: a review of information criterion rules. IEEE
Signal Process Magazine 21(1): 36–47. https://doi.org/10.1109/MSP.2004.1311138
Strand SM, Christiansen HH, Johansson M, Åkerman J & Humlum O (2021) Active layer
thickening and controls on interannual variability in the Nordic Arctic compared to the circum-Arctic. Permafrost and Periglacial Processes 32(1): 47–58. https://doi.org/10.1002/PPP.2088
Tammilehto A, Härmä P, Kallio M, Törmä M, Saikkonen A, Tuominen S, Impiö M, Heikkinen M,
Kervinen M, Jussila T, Böttcher K, Pääkkö E, Kokko A, Mäkelä K & Anttila S (2024) Ylä-Lapin luonnon kaukokartoitus – Projektin loppuraportti osa 1 – Aineistot ja menetelmät. Metsähallitus, Vantaa.
Terentieva IE, Glagolev MV, Lapshina ED, Faritovich Sabrekov A & Maksyutov S (2016)
Mapping of West Siberian taiga wetland complexes using Landsat imagery: implications for methane emissions. Biogeosciences 13(16): 4615–4626. https://doi.org/10.5194/bg-13-4615-2016
Thibault S & Payette S (2009) Recent permafrost degradation in bogs of the James Bay area,
northern Quebec, Canada. Permafrost and Periglacial Processes 20(4), 383–389. https://doi.org/10.1002/PPP.660
Thuiller W, Georges D, Gueguen M, Engler R & Breiner F (2021) Biomod2: ensemble platform for
species distribution modelling. CRAN. https://cran.r-project.org/web/packages/biomod2/biomod2.pdf (accessed 13 January 2023)
Treat CC, Jones MC, Camill P, Gallego-Sala A, Garneau M, Harden JW, Hugelius G, Klein ES,
Kokfelt U, Kuhry P, Loisel J, Mathijssen PJH, O'Donnell JA, Oksanen PO, Ronkainen TM,
Sannel ABK, Talbot J, Tarnocai C & Väliranta M (2016) Effects of permafrost aggradation on peat properties as determined from a pan-Arctic synthesis of plant macrofossils. Journal of Geophysical Research: Biogeosciences 121(1): 78–94. https://doi.org/10.1002/2015JG003061
Treat CC & Jones MC (2018) Near-surface permafrost aggradation in Northern Hemisphere
peatlands shows regional and global trends during the past 6000 years. The Holocene 28(6): 998–1010. https://doi.org/10.1177/0959683617752858
Valman S, Siewert MB, Boyd D, Ledger M, Gee D, De La Barreda-Bautista B, Sowter A &
Sjögersten S (2024) InSAR-measured permafrost degradation of palsa peatlands in northern Sweden. The Cryosphere 18(4): 1773–1790. https://doi.org/10.5194/TC-18-1773-2024
Van Steenis J & Zuidhoff FS (2013) Hoverflies (Diptera: Syrphidae) of Laivadalen, a palsa bog in
northern Sweden, with notes on possible bio-indicator species. Entomologiska Tidskrift 134(1): 181–192.
Van Steenis J (2022) Endangered palsa mire hoverflies (Diptera, Syrphidae) in northern Sweden.
Mires and Peat 28(1): 20. https://doi.org/10.19189/MAP.2021.MEH.STA.2338
Van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T,
Krey V, Lamarque J-F, Masui T, Meinshausen M, Nakicenovic N, Smith SJ & Rose SK (2011) The representative concentration pathways: an overview. Climatic Change 109(1): 5–31. https://doi.org/10.1007/s10584-011-0148-z
Vasil’chuk YK, Vasil’chuk AC, Budantseva NA, Yoshikawa K, Chizhova JN & Stanilovskaya JV
(2013a) Palsas in the southern part of the Middle Siberia permafrost zone. Engineering Geology 3(1): 13–34.
Vasil’chuk YK, Vasil’chuk AC & Repkina TY (2013b) Palsas in the polar part of the Middle
Siberia permafrost zone (In Russian). Engineering Geology 2(1): 28–45.
Vasil’chuk YK, Budantseva NA, Vasil’chuk AC & Chizhova JN (2014) Palsas in the Eastern
Siberia and Far East permafrost zone (In Russian). Engineering Geology 1(1): 40–64.
Verdonen M, Störmer A, Lotsari E, Korpelainen P, Burkhard B, Colpaert A & Kumpula T (2023)
Permafrost degradation at two monitored palsa mires in north-west Finland. The Cryosphere 17(5): 1803–1819. https://doi.org/10.5194/TC-17-1803-2023
Verdonen M, Villoslada M, Tiina K, Kolari HM, Tahvanainen T, Korpelainen P, Tarolli P &
Kumpula T (2024) Spatial distribution of thaw depth in palsas estimated from optical unoccupied aerial systems data. Permafrost and Periglacial Processes 36(1): 22–36. https://doi.org/10.1002/PPP.2252
Vitt DH, Halsey LA & Zoltai SC (1994) The bog landforms of continental western Canada in
relation to climate and permafrost patterns. Arctic and Alpine Research 26(1): 1–13. https://doi.org/10.1080/00040851.1994.12003032
Vorren KD (2017) The first permafrost cycle in Faerdesmyra. Norwegian Journal of Geography
(2): 114–121. https://doi.org/10.1080/00291951.2017.1316309
Wang Y, Way RG & Beer J (2023) Multi-decadal degradation and fragmentation of palsas and peat
plateaus in coastal Labrador, northeastern Canada. Environmental Research Letters 19(1): 014009. https://doi.org/10.1088/1748-9326/AD0138
Ward Jones M, Habeck JO, Ulrich M, Crate S, Gannon G, Schwoerer T, Jones B, Kanevskiy M,
Baral P, Maharjan A, Steiner J, Spring A, Price MJ, Bysouth D, Forbes BC, Verdonen M, Kumpula T, Strauss J, Windirsch T, Poeplau C, Shur Y, Gaglioti B, Parlato N, Tao F, Turetsky M, Grand S, Unc A & Borchard N (2024) Socioecological dynamics of diverse global permafrost-agroecosystems under environmental change. Arctic, Antarctic, and Alpine Research 56(1): 2356067. https://doi.org/10.1080/15230430.2024.2356067
Washburn AL (1980). Permafrost features as evidence of climatic change. Earth-Science Reviews
(4): 327–402. https://doi.org/10.1016/0012-8252(80)90114-2
Washburn, A.L., (1983). What is a palsa? Abhandlungen der Akademie der Wissenschaften in
Göttingen, Mathematisch-Physikalische Klasse 35: 34–47.
Way RG & Lewkowicz AG (2018) Environmental controls on ground temperature and permafrost
in Labrador, northeast Canada. Permafrost and Periglacial Processes 29(2): 73–85. https://doi.org/10.1002/ppp.1972
Wood SN (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of
semiparametric generalized linear models. Journal of Royal Statistical Society Series B: Statistical Methodology 73(1): 3–36. https://doi.org/10.1111/J.1467-9868.2010.00749.X
Xu J, Morris PJ, Liu J & Holden J (2018) PEATMAP: refining estimates of global peatland
distribution based on a meta-analysis. Catena 160(1): 134–140. https://doi.org/10.1016/J.CATENA.2017.09.010
Yletyinen E (2023) Palsojen muutokset Paistuntureiden alueella viimeisten 50 vuoden aikana.
Master's Thesis, University of Oulu.
Zoltai SC & Tarnocai C (1971) Properties of a wooded palsa in northern Manitoba. Arctic and
Alpine Research 3(2): 115–129. https://doi.org/10.1080/00040851.1971.12003602
Zoltai SC (1972) Palsas and peat plateaus in central Manitoba and Saskatchewan. Canadian Journal
of Forest Research 2(3): 291–301. https://doi.org/10.1139/x72-046
Zoltai SC & Tarnocai C (1975) Perennially frozen peatlands in the western Arctic and subarctic of
Canada. Canadian Journal of Earth Sciences 12(1): 28–43. https://doi.org/10.1139/e75-004
Zoltai SC (1993) Cyclic development of permafrost in the peatlands of northwestern Alberta,
Canada. Arctic and Alpine Research 25(3): 240–246. https://doi.org/10.1080/00040851.1993.12003011
Zoltai SC, Siltanen RM & Johnson JD (2000) A wetland data base for the western boreal,
subarctic, and arctic regions of Canada. Information report NOR-X-368, Canadian Forest Service, Edmonton.
Zuidhoff FS & Kolstrup E (2000) Changes in palsa distribution in relation to climate change in
Laivadalen, northern Sweden, especially 1960–1997. Permafrost and Periglacial Processes 11(1): 55–69. https://doi.org/10.1002/(SICI)1099-1530(200001/03)11:1%3C55::AID-PPP338%3E3.0.CO;2-T
Zuidhoff FS & Kolstrup E (2005) Palsa development and associated vegetation in northern
Sweden. Arctic, Antarctic, and Alpine Research 37(1): 49–60.
https://doi.org/10.1657/1523-0430(2005)037[0049:PDAAVI]2.0.CO;2
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Oona Leppiniemi

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
