Geomorphic evidence of extreme events in the High Arctic (Wedel Jarlsberg Land, Svalbard)

Authors

DOI:

https://doi.org/10.30671/nordia.147657

Abstract

Among the geomorphological processes determined by meteorological conditions, topography, and geological factors, floods and various mass movements have an extreme origin. In the High Arctic, which is the domain of cryogenic processes, extreme events can reach a scale and intensity never before observed, considering the exceptionally rapid environmental changes caused by global warming. It is widely believed that the frequency of extreme events will increase. However, knowledge about their past activity is limited due to the low population density in high-latitude areas and the deficit of adequate observations before the digital era. They are recorded in sediments and landforms, which require comparative analysis. This paper gives two examples of landforms resulting from extreme geomorphological events occurring in Wedel-Jarlsberg Land on the western coast of Svalbard (approx. 77°N). A basic description of an alluvial fan with an area of 0.067 km² was provided, resulting from mud-debris flows from the Steinvik Valley, likely due to water being pushed out of a shallow lake with an area of 0.022 km². The possibility of a landslide occurring in the postglacial period on the slopes of the Jens Erikfjellet massif was also indicated. The timing of the events is discussed based on the existing dating of raised marine terraces. The presented data come from preliminary studies, such as field observations, simple measurements, and GIS analysis of available digital materials. The outcomes can introduce a better understanding of the scale of extreme processes and the search for similar landforms. Such inventory has not yet been comprehensively conducted on Svalbard, even though extreme events commonly occur during the Holocene climate fluctuations in this area. Their frequency and scale remain unknown.

References

André MF (1995) Holocene Climate Fluctuations and Geomorphic Impact of Extreme Events in

Svalbard. Geografiska Annaler Ser. A Physical Geography 77(4): 241–250. https://doi.org/10.1080/04

1995.11880444

Birkenmajer K (1960) Raised marine features of the Hornsund area, Vestspitsbergen. Studia Geologica

Polonica 5: 3–95.

Birkenmajer K (1990) Geological map of the Hornsund area 1:75 000. University of Silesia.

Biskaborn BK, Smith SL., Noetzli J et al. (2019) Permafrost is warming at a global scale. Nature

Communication 10(264). https://doi.org/10.1038/s41467-018-08240-4

Błaszczyk M, Jania JA. & Kolondra L (2013) Fluctuations of tidewater glaciers in Hornsund Fjord

(Southern Svalbard) since the beginning of the 20th century. Polish Polar Research 34(4): 327–352.

doi: 10.2478/popore−2013−0024

Chmal H (1987) Pleistocene sea level changes and glacial history of the Hornsund area, Svalbard. Polar

Research 5: 269-270. https://doi.org/10.1016/j.coldregions.2014.04.003

Christensen TR, Lund M, Skov K, Abermann J, López-Blanco E, Scheller J, Scheel M, Jackowicz-

Korczynski M, Langley K, Murphy MJ & Masepanov M (2021), Multiple Ecosystem Effects of

Extreme Weather Events in the Arctic. Ecosystems 24: 122–136. https://doi.org/10.1007/s10021-

-00507-6

Czerny J, Kieres A, Manecki M & Rajchel J (1993) In A. Manecki (Ed.) Geological map of the SW

part of Wedel Jarlsberg Land, Spitsbergen 1:25000. Institute of Geology and Mineral Deposits,

University of Mining and Metallurgy.

Eckerstorfer M, Christiansen HH, Rubensdotter L & Vogel S (2013) The geomorphological effect of

cornice fall avalanches in the Longyeardalen valley, Svalbard. The Cryosphere 7: 1361–1374. https://

doi.org/10.5194/tc-7-1361-2013.

Farnsworth WR, Allaart L, Ingólfsson Ó, Alexanderson H, Forwick M, Noormets R, Retelle M &

Schomacker A (2020) Holocene glacial history of Svalbard: Status, perspectives and challenges.

Earth-Science Reviews 208, 103249. https://doi.org/10.1016/j.earscirev.2020.103249

Fell R, Corominas J, Bonnard C, Cascini L, Leroi E & Savage WZ (2008) Guidelines for landslide

susceptibility, hazard and risk zoning for land use planning. Engineering Geology 102 (3–4): 85–98.

https://doi.org/10.1016/j.enggeo.2008.03.022.

Glazer M, Dobiński W, Marciniak A, Majdański M & Błaszczyk M (2020) Spatial distribution and controls

of permafrost development in the non-glacial Arctic catchment over the Holocene, Fuglebekken,

SW Spitsbergen. Geomorphology 358, 107128. https://doi.org/10.1016/j.geomorph.2020.107128

Górski M & Teisseyre R (1991) Seismic events in Hornsund, Spitsbergen. Polish Polar Research 12(3):

–352.

Goudie AS (2006) The Schmidt hammer in geomorphological research. Progress in Physical Geography 30:

–718. https://doi.org/10.1177/0309133306071954

Hartvich F, Blahut J & Stemberk J (2017) Rock avalanche and rock glacier: A compound landform

study from Hornsund, Svalbard. Geomorphology 276: 244-256. https://doi.org/10.1016/j.

geomorph.2016.10.008

Jahn A (1959) The raised shorelines and beaches in Hornsund and the problem of postglacial vertical

movements of Spitsbergen. Przegląd Geograficzny 31, suppl.: 143—178.

Jahn A (1967) Some features of mass movement on Spitsbergen slopes. Geografiska Annaler Ser. A Physical

Geography 49(2–4): 213–225. https://doi.org/10.1080/04353676.1967.11879751

Jahn A (1968) Raised shore lines and terraces at Hornsund, and postglacial vertical movements on

Spitsbergen. In K. Birkenmajer (Ed.), Polish Spitsbergen Expeditions 1957–1960, Polish Academy

of Science, III I.G.Y./I.G.C. Committee, Warszawa: 173-176.

Karczewski A, Andrzejewski L, Chmal H, Jania J, Kłysz P, Kostrzewski A, Lindner L, Marks L, Pękala

K, Pulina M, Rudowski S, Stankowski W, Szczypek T & Wiśniewski E (1984) Hornsund, Spitsbergen.

Geomorfologia – geomorphology 1:75 000. Uniwersytet Śląski, Katowice.

Karczewski A, Kostrzewski A & Marks L (1981b) Morphogenesis of subslope ridges to the north of

Hornsund, Spitsbergen. Polish Polar Research 2(1–2): 29–38.

Karczewski A, Kostrzewski A & Marks L. (1981a) Raised marine terraces in Hornsund area (northern

part), Spitsbergen. Polish Polar Research 2(1–2): 39–50. https://journals.pan.pl/Content/111556/

PDF/1981_1-2_039-050.pdf

Karjalainen O, Aalto J, Luoto M, Westermann S, Romanovsky VE, Nelson FE, Etzelmüller B & Hjort

J (2019) Circumpolar permafrost maps and geohazard indices for near-future infrastructure risk

assessments. Scientific Data 6, 190037. https://doi.org/10.1038/sdata.2019.37

Kasprzak M & Szymanowski M (2023) Spatial and temporal patterns of near-surface ground temperature

in the Arctic mountain catchment. Land Degradation & Development 34(17): 5238–5258. https://doi.

org/10.1002/ldr.4841

Kasprzak M, Strzelecki MC, Traczyk A, Kondracka M, Lim M & Migała K (2017) On the potential for

a bottom active layer below coastal permafrost: the impact of seawater on permafrost degradation

imaged by electrical resistivity tomography (Hornsund, SW Spitsbergen). Geomorphology 293, part B:

–359. https://doi.org/10.1016/j.geomorph.2016.06.013

Kociuba W (2023) Geomorphic changes of the Scott River alluvial fan in relation to a four-day flood

event. Water 15, 1368. https://doi.org/10.3390/w15071368

Kokelj SV, Lantz TC, Kanigan J, Smith SL & Coutts R (2009) Origin and polycyclic behaviour of tundra

thaw slumps, Mackenzie Delta region, Northwest Territories, Canada. Permafrost and Periglacial Processes

: 173–184. https://doi.org/10.1002/ppp.642

Kuhn D, Hermanns LE, Torizin J, Fuchs JM, Schüßler N, Eilertsen RS, Redfield TF, Balzer B & Böhme

M (2022) Litho-structural control on rock slope failures at Garmaksla, Billefjorden coastline, Svalbard.

Quarterly Journal of Engineering Geology and Hydrogeology 56. https://doi.org/10.1144/qjegh2022-069

Kuhn D, Redfield TF, Hermanns RL, Fuchs M, Torizin J & Balzer D (2019) Anatomy of a mega-rock slide

at Forkastningsfjellet, Spitsbergen and its implications for landslide hazard and risk considerations.

Norwegian Journal of Geology 99: 41–61. https://dx.doi.org/10.17850/njg99-1-03

Larsson S (1982) Geomorphological Effects on the Slopes of Longyear Valley, Spitsbergen, After a

Heavy Rainstorm in July 1972. Geografiska Annaler Ser. A Physical Geography 64(3–4): 105–125. https://

doi.org/10.1080/04353676.1982.11880059

Lewkowicz AG & Way RG (2019) Extremes of summer climate trigger thousands of thermokarst

landslides in a High Arctic environment. Nature Communications 10, 1329. https://doi.org/10.1038/

s41467-019-09314-7

:2 Kasprzak: Geomorphic evidence of extreme events in the High Arctic — p. 1–15

Lindner L, Marks L, Roszczynko W & Semil J (1991) Age of raised marine beaches of northern

Hornsund Region, South Spitsbergen. Polish Polar Research 12(2): 161–182. https://www.czasopisma.

pan.pl/dlibra/publication/127362/edition/111123/content

Lützow N, Veh G & Korup O. (2023) A global database of historic glacier lake outburst floods. Earth

System Science Data 15: 2983–3000. https://doi.org/10.5194/essd-15-2983-2023

Makopoulou E, Karjalainen O, Elia L, Blais-Stevens A, Lantz T, Lipovsky P, Lombardo L, Nicu IC,

Rubensdotter L, Rudy ACA & Hjort J (2024) Retrogressive thaw slump susceptibility in the northern

hemisphere permafrost region. Earth Surface Processes and Landforms (online first): 1–13. https://doi.

org/10.1002/esp.5890

Meteorological bulletins Spitsbergen—Hornusnd. Polish Polar Station, Institute of Geophysics, Polish

Academy of Sciences, 2009–2023. https://hornsund.igf.edu.pl/index.php/pogoda/

Mitchell BJ, Bungum H, Chan WW & Mitchell PB (1990) Seismicity and present-day tectonics of the

Svalbard region. Geophysical Journal International 102(1): 139–149. https://doi.org/10.1111/j.1365-

X.1990.tb00536.x

Nicu IC, Elia L, Rubensdotter L, Tanyas H & Lombardo L (2023) Multi-hazard susceptibility mapping

of cryospheric hazards in a high-Arctic environment: Svalbard Archipelago. Earth System Science Data

: 447–464, https://doi.org/10.5194/essd-15-447-2023

Nicu IC, Rubensdotter L, Tanyaș H & Lombardo L (2024) Near Pan-Svalbard permafrost cryospheric

hazards inventory (SvalCryo). Scientific Data 11(894). https://doi.org/10.1038/s41597-024-03754-7

Nicu IC, Tanyas H, Rubensdotter L & Lombardo L (2022) A glimpse into the northernmost thermo-

erosion gullies in Svalbard archipelago and their implications for Arctic cultural heritage. Catena 212,

https://doi.org/10.1016/j.catena.2022.106105

Niedzielski T, Migoń P & Placek A (2009) A minimum sample size required from Schmidt hammer

measurements. Earth Surface Processes and Landforms 34(13): 1713–1725. https://doi.org/10.1002/

esp.1851

Noël B, Jakobs CL, van Pelt WJJ, Lhermitte S, Wouters B, Kohler J, Hagen JO, Luks B, Reijmer CH,

van de Berg WJ & van den Broeke MR (2020) Low elevation of Svalbard glaciers drives high mass

loss variability. Nature Communications 11, 4597. https://doi.org/10.1038/s41467-020-18356-1

Nowak A & Hodson A (2013) Hydrological response of a High-Arctic catchment to changing climate

over the past 35 years: a case study of Bayelva watershed, Svalbard. Polar Research 32, 19691: 1–16.

http://dx.doi.org/10.3402/polar.v32i0.19691

Owczarek P, Nawrot A, Migała K, Malik I & Korabiewski B (2024) Flood–plain responses to

contemporary climate change in small High–Arctic basins (Svalbard, Norway). Boreas 43: 384-402.

DOI 10.1111/bor.12061

Osika A, Jania J & Szafraniec JE (2022) Holocene ice-free strait followed by dynamic Neoglacial fluctuations:

Hornsund, Svalbard. The Holocene 32(7): 664–679. http://dx.doi.org/10.1177/09596836221088232

Overland JE (2021) Rare events in the Arctic. Climatic Change 168(27): 1–27. https://doi.org/10.1007/

s10584-021-03238-2

Overland JE (2022) Arctic Climate Extremes. Atmosphere 13, 1670: 2–10. https://doi.org/10.3390/

atmos13101670

Owczarek P, Nawrot A, Migała K, Malik I & Korabiewski B (2014) Flood-plain responses to

contemporary climate change in small High-Arctic basins (Svalbard, Norway). Boreas 43(2): 384–

https://doi.org/10.1111/bor.12061

Porter C; Howat I, Noh M-Jet.al. (2022) ArcticDEM – Strips, Version 4.1, Harvard Dataverse V1.

https://doi.org/10.7910/DVN/C98DVS

Rantanen M, Karpechko AY, Lipponen A,Nordling, Hyvärinen O, Ruosteenoja K, Vihma T & Laaksonen

A (2022) The Arctic has warmed nearly four times faster than the globe since 1979. Communications

Earth & Environment 3(168). https://doi.org/10.1038/s43247-022-00498-3

Rysiukiewicz M, Marszałek H & Wąsik M (2023) Forming of water chemistry in active layer, Steinvik River

catchment, SW Spitsbergen. Polish Polar Research 44(2): 179–196. DOI:10.24425/ppr.2022.143313

Schuler TV, Kohler J, Elagina et al. (2020) Reconciling Svalbard Glacier Mass Balance. Frontiers in Earth

Science, Sec. Cryospheric Sciences 8:156. doi: 10.3389/feart.2020.00156

Senderak K (2023) Conceptual model for talus slope development in Brattegg Valley (SW Spitsbergen)

based on sedimentology of debris deposits in periglacial zone. Polish Polar Research 44(3): 271–290.

doi: 10.24425/ppr.2023.144543

Stemberk J, Briestenský M & Cacoń S (2015) The recognition of transient compressional fault slow-

slip along the northern shore of Hornsund Fjord, SW Spitsbergen, Svalbard. Polish Polar Research

(2): 109–123. doi:10.1515/popore−2015−0007

Strzelecki M, Kasprzak M, Lim M, Świrad Z, Jaskólski M, Pawłowski Ł & Modzel P (2017) Cryo-

conditioned rocky coast systems: A case study from Wilczekodden, Svalbard. Science of The Total

Environment 607–608: 43-453. https://doi.org/10.1016/j.scitotenv.2017.07.009

Taylor C, Robinson T, Dunning S, Carr J. & Westoby M (2023) Glacial lake outburst floods threaten

millions globally. Nature Communications 14. doi: 10.1038/s41467-023-36033-x.

Thywissen K (2006) Components of risk: a comparative glossary. UNU-EHS SOURCE. UNU-EHS.

https://collections.unu.edu/eserv/UNU:1869/pdf4042.pdf

Urbański JA, Litwicka D (2022) The decline of Svalbard land-fast sea ice extent as a result of climate

change. Oceanologia 64(3): 535–545. https://doi.org/10.1016/j.oceano.2022.03.008

Wawrzyniak T & Osuch M (2020) A 40-year High Arctic climatological dataset of the Polish Polar

Station Hornsund (SW Spitsbergen, Svalbard). Earth System Science Data 12(2): 805–815. https://

doi.org/10.1594/PANGAEA.909042

Wieczorek I, Strzelecki MC, Stachnik Ł, Yde JC & Małecki J (2023) Post-Little Ice Age glacial lake

evolution in Svalbard: inventory of lake changes and lake types. Journal of Glaciology 69(277): 1449–

https://doi.org/10.1017/jog.2023.34

Wołoszyn A & Kasprzak M (2023) Contemporary landscape transformation in a small Arctic catchment

(Bratteggdalen, Svalbard). Polish Polar Research 44(3): 227–248. doi:10.24425/ppr.2023.144542

Wołoszyn A, Owczarek Z, Wieczorek I, Kasprzak M & Strzelecki MC. (2022) Glacial Outburst Floods

Responsible for Major Environmental Shift in Arctic Coastal Catchment, Rekvedbukta, Albert I

Land, Svalbard. Remote Sensing 14(24), 6325. https://doi.org/10.3390/rs14246325

Zwoliński Z, Giżejewski J,Karczewski A, Kasprzak M, Lankauf KR, Migoń P, Pękala K, Repelewska-

Pękalowa J, Rachlewicz G, Sobota I, Stankowski W & Zagórski P (2013) Geomorphological settings

of Polish research areas on Spitsbergen. Landform Analysis 22: 125–143. http://dx.doi.org/10.12657/

landfana.022.011

Downloads

Published

2025-07-25

How to Cite

Geomorphic evidence of extreme events in the High Arctic (Wedel Jarlsberg Land, Svalbard). (2025). Nordia Geographical Publications, 54(2), 21-35. https://doi.org/10.30671/nordia.147657