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Introduction

Seasonal snow cover is an elementary part 
of  the annual and diurnal water and energy 
cycles (Groisman & Davies 2001; Pomeroy 
& Brun 2001). For instance, the snow depth 
influences the ground temperatures and 
the beginning and duration of  the growing 

season (Anderton et al. 2004; Wang et al. 
2015). High economic interest focuses at 
mountain snow because it provides drinking 
and irrigation water and propulsion for the 
hydropower (Stepphun 1981; McClung 
& Schaerer 2006; Schirmer et al. 2011; 
Saloranta 2014; Buckingham et al. 2015). 
Global warming is changing the depth, 
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Abstract: Snow depth is highly variant in wind-dominant mountain environments. The 
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ground temperatures and the beginning of the growing season. Statistical modelling 
provides a feasible and cost-effective method for the analysis and prediction of local-
scale snow depth variations. The focus of this study is to analyse the spatial variability 
of near-maximum snow depth at local scale. Moreover, a statistical model for estimating 
the near-maximum snow depth distribution is provided. 
The study area in Northern Norway, Tana municipality, is characterized with a mountain 
landscape. The elevation range of the area is 500 m and the study sites are located on 
the slopes of the Rásttigáisá and Geaidnogáisá mountains. The lowest parts consist of 
mountain birch forest and most of the area does not have vegetation above the snow 
surface. 
Snow depth observations were collected in mid-April 2015 in a one-week measurement 
campaign. Modelling was conducted with Generalized Additive Model (GAM) using GIS-
based terrain and vegetation surrogates.
Upwind exposure to westerly winds and horizontal (plan) curvature measure were 
the most important explanatory variables in the analyses. The interaction of wind and 
topography defines the winter maximum snow depth in the study area. Terrain sheltering 
from westerly winds and concave topography show increases in snow depth. The impact 
of vegetation was only visible in the mountain birch forests which had relatively even 
snow depth. In open areas above the forest, snow depth was highly variable. Elevation 
and solar radiation, which have been commonly used in mountain snow depth models, 
did not indicate impact in this study area.
The GAMs calibrated in this study approximate the near-average snow depth quite 
well. Most of the sites with shallow or thick snow cover could not be predicted with the 
resolution, sample size and variables used in this research.
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duration and characteristics of  snow cover 
(Callaghan et al. 2011). Large uncertainties 
lie even in measuring the snow depth 
or water equivalent especially in remote 
mountain areas (Sexstone & Fassnacht 
2014; Sturm 2015).

In large scale, the snow depth depends on 
latitude, elevation and air mass movements 
(Pomeroy & Brun 2001; Mott et al. 2014). 
The local scale variation is dependent on 
winds and solar radiation (Kind 1981; 
McKay & Gray 1981; Pomeroy & Brun 
2001). Wind velocity and direction may 
change markedly over small distances 
according to topography and vegetation 
(McClung & Schaerer 2006; Mott et al. 
2010; Dvornikov et al. 2014). Large variation 
within small distances is descriptive in 
open mountain snow cover (Dadic et al. 
2010; Mott et al. 2010; Schirmer et al. 2011; 
Shirmer & Lehning 2011). Mountain snow 
depth is often modelled due to lack of  
small-scale snow data (Grünewald et al. 
2013; Buckingham et al. 2015; Magnusson et 
al. 2015; Sturm 2015). Statistical modelling 
provides a feasible and cost-effective 
method for the analysis and prediction of  
local-scale snow depth variations (Erickson 
et al. 2005; Sturm & Wagner 2010).

The focus of  this study was to analyse 
the spatial variability of  near-maximum 
snow depth at local scale in one year. 
Moreover, a statistical model and prediction 
for estimating the near-maximum snow-
depth distribution is provided. 

Description of the research

The 35 km2 study area is located in Northern 
Norway, Tana municipality. It lies on the 

slopes of  the Rásttigáisá and Geaidnogáisá 
mountains. The elevation range of  the area 
is 500 m with highest site at 660 m above 
sea level. The lowest parts are covered with 
mountain birch forest, most of  the area 
does not have vegetation reaching above 
the snow surface.

Snow depth observations from 63 sites 
were collected manually in mid-April 2015 
in a one-week measurement campaign. 
One observation is a mean of  five snow 
probe measurements. Mean snow depth 
for the study area was 42 cm. There were 
five distinctly deeper sites, deepest drift 
was 172 cm. 

A set of  terrain and vegetation surrogates 
was implemented as explanatory variables. 
Upwind exposure (Sx) is defined as 
the angle of  the horizon within given 
searching distance (Winstral et al. 2002). The 
upwind direction was selected according 
to correlation comparison with the snow 
distribution as wind observations were not 
available in the study area (Revuelto et al. 
2014). Plan curvature was selected after 
comparison of  different curvature measures. 
It is defined as the curvature perpendicular 
to the steepest gradient (Gallant & Wilson 
2000). Maximum theoretical solar radiation 
and heatload were also compared and latter 
chosen (McCune & Keon 2002). Also slope 
angle, aspect and topographic wetness index 
(Beven & Kirkby 1979) were in the full 
model. Normalized Difference Vegetation 
Index (NDVI) represented the vegetation 
impact (Rouse et al. 1974 in Wang et al 2015: 
61). Elevation could not be used in the 
same models with the NDVI due to strong 
mutual correlation. The Digital Elevation 
Model resolution was 10 m (Kartverket.
no 2016). 
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Mode l l i ng  was  conduc ted  w i th 
Generalized Additive Model (GAM) (Hastie 
& Tibshirani 1986; Wood 2006: 121). GAM 
has been used for mountain snow depth 
modelling by López-Moreno & Nogúes-
Bravo (2005) and López-Moreno et al. (2010).  
GCV (Generalized Cross-Validation) was 
used as model selection criteria (Craven and 
Wahba 1979; Wood 2006: 177–185). Models 
were built with different link functions and 
Gamma and Gaussian distributions (Zuur 
et al. 2009). Leave-one-out cross-validation 
and mean absolute error were used for 
model evaluation and comparison (Willmott 
1981; Guisan et al. 2002; Wood 2006; James 
et al. 2013). Local spatial autocorrelation 

was examined visually from residual plot 
(Anselin 2005; Zuur et al. 2009; Le Rest et 
al. 2014).

Results

Upwind exposure to westerly winds and 
plan curvature contributed to the selected 
model. Model’s explained deviance was 
21,4%. It followed Gamma distribution 
with logarithmic link function. The mean 
absolute error was 23 and 24 cm in training 
and validation phases, respectively.

The model was used to predict the 
snow depth distribution. Figure 1 shows 

Figure 1. The snow depth prediction for the study area is presented with colour gradient from bare ground 
to 200 cm which covers the range of the observations. The prediction contains also higher values but these 
are located in the unvisited steep-slopes. The circles show the residuals at measurement sites. Orange 
residuals are positive and light green are negative, sizes are relative to the residuals absolute values. 
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the prediction and measurement sites 
with residuals. Large clusters of  high 
negative or positive residuals are not visible, 
indicating that spatial autocorrelation 
is not significant. Five distinctly deeper 
observations are visible with large positive 
residuals. The model is not able to predict 
small-scale drifts. Deeper snowpack with 
few unrealistically high values (up to 2.5 
x 1017 m) is predicted to unvisited, steep 
eastern slopes. 

Discussion
According to the study, the interaction of  
wind and topography defines the winter 
near-maximum snow depth in the study 
area. Terrain sheltering from westerly winds 
and concave topography show increases 
in snow depth. While upwind exposure 
represents both wind direction and speed, 
curvature has impact on local surface wind 
velocity (Mott et al. 2010; Sturm & Wagner 
2010). Upwind exposure has often shown 
its capability in mountain snow distribution 
models (e.g. Winstral et al. 2002; Molotch 
et al. 2005; Mott et al 2010; Tabari et al. 
2010; Schirmer et al. 2011; Marofi et al. 
2011; Schön et al. 2015). Various different 
curvature measures have been used in 
snow models (López-Moreno et al. 2010; 
Revuelto et al. 2014; Sexstone & Fassnacht 
2014; Dvornikov et al. 2015). Plan curvature 
was also important for Gharaei-Manesh et 
al. (2016). 

Other topography variables did not 
contribute to the model statistically 
significantly. The impact of  NDVI was two-
fold. Mountain birch forest had relatively 
even, greater than average snow depth while 
open area above had highly varying snow 

cover. Marchand and Killingtveit (2005) 
divided their South-Norwegian research 
area into birch-forest and open mountain 
environment, this kind of  division would 
have been also possible in this study area. 
Dvornikov et al. (2015) found vegetation 
height impacting the snow depth in tundra 
environment with finer DEM resolution. 
Solar radiation has been an important 
variable in lower latitudes (Anderton 2004; 
Erickson et al. 2005; López-Moreno & 
Nogúes-Bravo 2005; López-Moreno et 
al. 2010; Revuelto et al 2014) but did not 
show reducing impact on the snow cover 
in this study. 

The sample size of  63 was small 
compared to a recommendation of  200 
(López-Moreno & Nogúes-Bravo 2005). 
The distribution of  the observations in 
windblown environment resembles Gamma 
distribution. Observations were positively 
skewed with only occasional deep drifts 
in the long tail, which is typical in wind-
dominated environments (Winstral & 
Marks 2014). There were no observations 
between 70 cm and 114 cm, the gap impacts 
the model performance in this range. This 
kind of  piecewice continuous distribution 
of  observations may be one reason for 
common usage of  decision trees with 
mountain snow models (e.g. Winstral et al. 
2002; Anderton et al. 2004; Molotch et al. 
2005; Litaor et al. 2008; López-Moreno et al. 
2010; Revuelto et al. 2014; Gharaei-Manesh 
et al. 2016).

The residual plot indicates that the 
model cannot predict the deepest measured 
sites correctly. The five deep observations 
show certain trends with explanatory 
variables, but they are too few to make any 
conclusions. On the contrary, the shallow 
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snowpack observations were not trending 
with the explanatory variables although 
their number was more adequate. High 
subgrid variation provides one explanation. 
The variation of  shallow and deep snow 
cover was often smaller in distance than the 
DEM grid size. 

The prediction shows unrealistically high 
values at unvisited, steep east-facing slopes 
and in steep ravines. Manual measuring 
would not have been safe at these slopes. 
Furthermore, Grünewald & Lehning (2015) 
do not recommend extrapolating flat-field 
snow-measurement information to nearby 
steeper areas. User should be cautious to 
the prediction in these areas.

Before using the model, one should also 
pay attention to the interannual consistency 
of  the model, which was build based on 
one-year observations only. Multiyear 
mountain snow research has found both 
consistent patterns (Deems et al. 2008; 
Mott et al. 2010; Schirmer et al. 2011; 
Grünewald et al. 2013; Winstral & Marks 
2014) and change between years (Marchand 
& Killingtveit 2005). Average snow depth 
varies between years (senorge.no 2016) 
but do the drifts and shallows form at the 
same sites? Based on global simulation of  
wind components (Rienecker et al. 2011), 
the wind force has varied in 30-year period 
but the same directions, west and south, 
dominated the whole period. It can be 
assumed that the built model is reasonably 
consistent between the years. 

Being far from perfect, this model 
provides the best available local-scale 
estimate of  the near-maximum snow depth 
in this area. It can be applied in studies 
considering growing season length or 
ground temperatures. 
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